Vertical distribution of HO_x and O_3 in the tropical marine boundary layer during PASE

Dasa Gu School of Earth & Atmospheric Sciences Georgia Institute of Technology

1. Introduction

- > Hydroxyl (OH) is considered the most important oxidant and the main sink of tropospheric trace gases.
- Hydroperoxy (HO₂) controls the most important pathway for converting NO to NO₂, ultimately leading to O₃ production.
- HO_x (OH+HO₂) and O₃ play key roles in tropospheric photochemistry and determine the fate of various trace gases.

1.2 Laboratory kinetics

Initial

 $O_3 + hv \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow 2OH$

Recycling $\frac{CO_{RH} + OH \xrightarrow{O_2} CO_2_{RO_2} + HO_2}{RO_2 + NO \rightarrow RO + NO_2}$ $RO_2 + NO \rightarrow RO + NO_2$ $RO + O_2 \rightarrow R'CHO + HO_2$ $HO_2 + NO \rightarrow OH + NO_2$ $HO_2 + O_3 \rightarrow OH + 2O_2$ $NO_2 + hv \xrightarrow{O_2} NO + O$ Removal $OH + HO_2 \rightarrow H_2O + O_2$ $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ $RO_2 + HO_2 \rightarrow ROOH + O_2$ $NO_2 + OH + M \rightarrow HNO_3 + M$

Reservoir $H_2O_2 + hv \rightarrow 2 OH$ $H_2O_2 + OH \rightarrow HO_2 + H_2O$ $CH_3OOH + hv \rightarrow CH_3O + OH$ $CH_3OOH + OH \rightarrow HCHO + OH + H_2O$

3. Model & Data

1-D model

- Constructed from the 3-D Regional chEmical trAnsport Model (REAM)
- Dry/wet deposition, photochemistry modules are from Harvard GEOS-Chem model
- Meteorological fields are assimilated from Weather Research and Forecasting model (WRF)
- Horizontal resolution of 10 x 10 km², 45 vertical layers below 10 mb.

Pacific Atmospheric Sulfur Experiment (PASE)

- Christmas Island (2 N, 157 W), Aug Sep, 2007
- Fourteen C-130H flights, including 2 nighttime.
- Measurements: OH, HO₂, H₂O, O₃, CO, H₂O₂, DMS, SO₂, DMSO, MSA, H₂SO₄, CH₃OOH, aerosol conc and sizes.

4.1 O₃ vertical distribution

• Boundary layer O_3 mixing ratio increased as NO_x increased. It shows good sensitivity of O_3 on NO_x .

• Compared with PEM-TB (Spring), PASE (Summer) O₃ mixing ratio significantly increased, showing stronger photochemistry in summer.

• Vertical advection (large-scale subsidence) and cloud convection made significant contributions for boundary layer O₃.

4.2 OH vertical distribution

- RF03 represents the typical daytime vertical profiles. High OH value in BL showing strong HO_x source of O(1D) + H₂O during daytime.
- RF13 is represents the typical nighttime vertical profiles. OH and HO_2 in night is significant lower than daytime.
- BL height do not change much from day to night, due to the heat capacity of ocean.
- There were intermittent turbulence at BuL. And strong temperature inversion above BuL produced significant gradient between free troposphere and BuL.

4.3 Cloud effect

- Cloud optical density has a significant impact on solar radiation energy in troposphere, and then impact the $O(1D)+H_2O$ reaction.
- The mixing ratios in low altitudes increased when set cloud OPTD to zero, because the enhancement of radiation under clouds.
- The mixing ratios in high altitudes decreased when set cloud OPTD to zero, because the deduction of actinic flux in clouds.

- O₃ vertical distribution fits OBS with 2 pptv NOx, while vertical transports contribute most BL O₃.
- Daytime and nighttime vertical distributions of OH suggested the structure of tropical marine BL and BuL is significantly impacted by ocean surface heat flux.
- Actinic flux is significantly impact by cloud coverage.

Thank you!

