Comparison of Ozone Concentrations

MARK DELGADO AIR POLLUTION METEOROLOGY

4/22/2021

Introduction

- Ozone is a air pollutant when found in the lower Troposphere.
- The Pacific Ocean transports Ozone into the western United States that are "a large fraction of the US health standard."
- Quantify to develop a more complete picture of US air quality.
- Ozone lifetime of ~100 Days is longer that he circum-global transport time (~30 days)
- Ozone concentrations at the mid latitutdes are established over weeks and months.
- Ozone concentrations are also uniform along longitudes as well as from the PBL to around the Tropopause.

Introduction (Continued)

- Ozone concentrations are variable on both shorter and longer time scales.
 - ▶ Wildfires (Lin et al., 2017)
 - Heatwaves
 - Droughts (Lin et al., 2020)
 - Climate Variability (Lin et al., 2014)
- Short term variability was ignored working instead on a baseline.
- 1978 2017 data for 28 locations split into 2 year means.
- Captured 89% of variance with a RMS deviation between the fit and the means of 1.3 ppb.
- Captured 67% of variance for the 28 trend analyses.
- Agrees well with quadratic fit from trend analysis results.

Introduction (Continued More)

Location	$a (intercept)^1$	b (slope)	c (curvature)	year _{max}	Years of
	(ppb)	(ppb/decade)	(ppb/decade ²)		data
Northern mid-latitudes		2.0 ± 0.6	-1.8 ± 0.6	2005.7 ± 2.5	1978-2017
Lassen Volcanic NP	41.0 ± 0.7	2.6 ± 0.7	-2.4 ± 0.8	2005.4 ± 2.2	1987–2017
Pacific MBL	32.9 ± 1.1	1.4 ± 1.0	-2.5 ± 1.1	2002.8 ± 2.2	1987–2017
derived from trends		3.4 ± 0.9	-2.9 ± 0.8	2005.8 ± 2.2	1984–2017

Table 1. Parameter values for theQuadratic fit. northern hemisphere mid-latitudes, two data sets for the western US (Parrish et al., 2020).

(from Parrish et al., 2021)

Introduction (Continued Even More)

Baseline ozone.

Long-term changes in

Note, Trendline was not given. Must be estimated.

(from Parrish et al., 2021)

Methodology

- Ozone data set of 1990 through 2020.
- Power Series fit $O_3 = a + bt + ct^2$

• Maximum Ozone concentration $year_{max} = 2000 - \frac{b}{2c}$

- ► $slope = b + c * (t_1 + t_2)$
- Comparison made for Grand Canyon National Park.
 - b (slope) ppb decade⁻¹ -1.5± 0.8
 - slope from quadratic fit (ppb decade⁻¹) -0.3±1.2
 - Years of data 1995 2007.

Methodology (Continued)

- Yearly averages taken for:
 - Alamo Lake La Paz, Arizona
 - Hayward, Alameda, California
 - Craters of the Moon National Monument, Butte, Idaho
 - Glacier National Park, Flathead, Montana
 - ▶ Foothills, Bernalillo, New Mexico
 - Sauvie Island SIS, Columbia, Oregon

Results

State	Arizona	Arizona	California	Idaho	Montana	New Mexico	Oregon
City/County	Cocomino	La Paz	Alameda	Butte County	Flathead Co.	Albuquerque	Columbia Co.
Year∖Name	Grand Canyon NP	Alamo Lake SP	Heyward	Craters / Moon NM	Glacier NP	Foothills	Sauvie Island
1990	46.954	NaN	18.838	NaN	27.118	35.394	23.653
1991	45.830	NaN	21.327	NaN	25.667	37.390	22.284
1992	45.864	NaN	20.346	31.605	22.822	35.637	28.482
1993	45.214	NaN	20.250	38.861	22.290	32.410	22.847
1994	48.476	NaN	20.455	43.415	25.246	38.551	25.436
1995	49.025	NaN	24.958	39.896	22.141	39.080	24.028
1996	47.986	NaN	24.200	40.879	25.677	42.867	28.268
1997	47.628	NaN	26.223	40.154	20.035	36.959	24.155
1998	48.810	NaN	29.608	42.363	25.230	41.961	24.736
1999	49.949	NaN	29.420	42.701	26.276	44.389	22.417
2000	47.649	NaN	26.956	42.072	23.742	43.857	23.327
2001	46.975	NaN	27.285	38.444	23.556	43.137	26.382
2002	51.134	NaN	29.744	44.559	23.962	44.081	27.432
2003	49.374	NaN	30.877	42.533	26.389	46.065	27.222
2004	48.072	NaN	29.417	42.595	24.632	42.634	24.593
2005	48.346	46.511	25.906	NaN	24.363	42.209	25.400
2006	50.003	47.602	30.122	NaN	25.793	29.753	27.243
2007	49.560	46.630	27.630	41.759	25.769	44.136	24.752
2008	47.443	45.896	31.136	43.162	26.078	40.916	24.428
2009	46.098	45.424	30.114	40.709	26.473	40.963	28.364
2010	47.178	45.852	NaN	43.057	23.437	42.912	24.578
2011	48.319	46.368	30.434	43.526	27.414	44.794	23.973
2012	47.543	46.066	29.073	41.381	26.548	44.979	26.544
2013	46.181	45.512	28.692	40.027	25.975	39.383	23.367
2014	44.711	40.298	30.603	38.556	25.475	38.407	25.699
2015	44.358	41.102	31.723	39.061	26.011	40.800	32.542
2016	44.360	39.549	29.623	38.617	23.007	41.878	25.151
2017	46.237	39.252	32.059	40.470	27.546	43.664	27.581
2018	46.524	41.369	31.047	40.255	26.821	44.162	26.696
2019	45.648	39.775	31.212	39.957	25.894	42.725	25.262
2020	45.442	42.005	29.244	42.166	28.742	43.469	26.455

Yearly averaged ozone data for seven selected locations.

NaN – No data available for that year.

Source:

https://aqs.epa.gov/aqsweb/airdata/download_files.html

Results – Grand Canyon NP, Arizona

- Comparison to Grand Canyon:
 - ▶ b (slope) ppb decade⁻¹ -1.5± 0.8
 - slope from quadratic fit (ppb decade-1)
 -0.3 ± 1.2
 - Years of data 1995 2007.
- My Data
 - Slope from quadratic fit (ppb decade-1) -0.37 ± 0.64
 - Years of data 1990 2020.

Values are within the range of their dataset.

Grand Canyon Ozone (Normalized to Ozone Maximum of Trendline)

Results – Heyward, California

The equations are based on the year 2000 being reset to year 0 and Using: $O_3 = a + bt + ct^2$ and $slope = b + c * (t_1 + t_2)$

- My Data
 - ► A = 27.211
 - ▶ B = 0.5639
 - ► C = -0.022
 - ▶ Slope = -0.12

Ozone Trends Heyward, California

Discussion/Conclusion

So far, data fits Parrish et al. well.

- Trends show maximums for the selected sites that match up well with the curves presented by Parrish et al.
- ▶ Heyward California shows good agreement with curve.
- Methodology for testing Parrish et al hypothesis seems sound.

Remaining Work/Issues

- Testing more cities to verify fitting.
- Potentially explore variance of individual cities to curve.
- Norris et al issues
 - Did not provide values for their general equations, need to extrapolate or find.
 - References were inconsistent in formatting
 - Extremely wide range of ozone concentrations trends at -2.8 to +7.0 ppb/decade
 - Yearly averaging did not eliminate an apparent short term signal of ~3 - 5 years (ENSO related?)

References

- Parrish, D. D., Derwent, R. G., and Faloona, I. C. (2021). Long-term Baseline Ozone Changes in the Western US: A Synthesis of Analysis. Submitted to: Geophys. Res. Let. 2021.
- Environmental Protection Agency (2021). Ambient Air Quality Monitoring Program and Data, <u>https://aqs.epa.gov/aqsweb/airdata/download_files.html</u>
- Lin, M., Horowitz, L. W., Oltmans, S. J., Fiore, A. M., and Fan, S. (2014). Tropospheric ozone trends at Mauna Loa observatory tired to decadal climate variability. *Nat. Geosci.*, 7(2), 136 143.
- Lin, M., Horowitz, L. W., Oltmans, S. J., Fiore, A. M., and Fan, S. (2017). US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. *Atmos. Chem. Phys.*, 17, 2943 – 2970.
- Lin, M., Horowitz, L. W., Xie, Y., Paulot, F., Malyshev, S., Shevliakova, E., et al. (2020). Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. *Nat. Cli. Cha.*, 10(5) 444 451.

Response Notes

- Periodogram
- Change the title
- Critique their data and some of the stuff they did.
- Make sure they did a monthly averaging and not just a summer average
- Check the latitude and how well the trends fit based on the latitude.