

### FAst Scenario Screening Tool

#### TM5-FASST

Addresses the need for swift and ad-hoc impact assessment of air pollutant emission scenarios in a global framework

Rita Van Dingenen, Joana Leitao, Frank Dentener







### the FAst Scenario Screening Tool TM5-FASST

- 'Emulator' of the full TM5-CTM global chemical transport model
- Source-Receptor model
- Linearized emission → concentration relations calculated with TM5-CTM
- 56 source/receptor regions
- EU27: 16 FASST regions

#### **Emissions considered:**

 $SO_2$ ,  $NO_x$ ,  $NH_3$ , CO, NMVOC, Elemental Carbon, Primary Organic Matter,  $PM_{2.5}$ ,  $CH_4$ 

#### Impacts considered:

PM<sub>2.5</sub> concentration and impacts on human health

O<sub>3</sub> and O<sub>3</sub> metrics, impacts on agriculture and health

NO<sub>y</sub> and SO<sub>x</sub> deposition (to be implemented)

Radiative forcing

CO<sub>2e</sub> based on GWP and GTP

BC deposition to Arctic

### Methodology SR calculations



#### **Calculation of Source-Receptor coefficients:**

- 1) Base run with year 2005 Base inventory
- 2) 20% emission perturbation per source region, per precursor
- 3) DELTA(PM, O3,...) with base run
- 4) **SR** coefficient = DELTA normalized per kg delta emission

$$A_{i \rightarrow j,y,x} = \Delta C_j(y) / \Delta E_i(x)$$
 with  $\Delta E_i(x) = 0.2 \text{xE}_{i,base}(x)$ 



#### Calculation of pollutant concentrations with linear relation and SR coefficient

$$C_{i} = C_{i}^{b} + 5 \sum_{k} \sum_{j} \Delta C_{j,k}^{i} \frac{E_{j,k} - E_{j,k}^{b}}{E_{j,k}^{b}}$$



# Specific features of the TM5-FASST model:

Implemented both as IDL code and as interactive MS-Excel spreadsheet tool

- IDL code: gridded maps as output
- Excel: tables and bar plots

Apportionment of pollutants concentrations and impacts

- By region
- By sector (provided input emissions are segregated by sector)
- By precursor

PM individual chemical compounds are modelled

- Primary: BC, OC, other primary PM
- Secondary: SO<sub>4</sub>, NO<sub>3</sub>, NH<sub>4</sub>



#### Methodology Health impacts



- PM2.5: 2-causes mortalities (Krewski et al. 2000, as in Anenberg et al., 2010)
- PM2.5: 5-causes mortalities (Burnett et al., 2013, as in GBD 2010)
- O3: long-term mortalities (Jerett et al., 2009, as in Anenberg et al., 2010)
- Cause-specific base Mortality data (+ projections till 2030) for 14 world regions from WHO



AF = (RR-1)/RRMort = MO\*AF\*POP

Burnett: Lower impact (benefits) at high PM2.5

e.g. at PM2.5 = 100µg/m<sup>3</sup> 52% of the "stroke" mortalities are attributable to PM2.5

#### Methodology Health impacts



#### Urban increment subgrid parametrization

#### Issue:

FASST-TM5 resolution =  $1^{\circ}x1^{\circ}$ 

Grid-mean PM not adequately representing population exposure when emission / concentration gradients are present within grid (urban vs. rural area)

- → Parametrization adjusting grid-mean concentration to urban incremented population-weighted exposure
- $\rightarrow$  Based on urban population fraction  $f_{up}$  and urban area fraction  $f_{ua}$  within gridcell

$$C_{BC,TM5}^{pop} = \left[ \frac{(f_{UP})^2}{f_{UA}} + \frac{(1 - f_{UP})^2}{1 - f_{UA}} \right] \cdot C_{BC,TM5}^{area}$$





#### Issues:

- Include/exclude natural aerosol?
- If excluded, use threshold for Burnett functions?

#### Methodology Crops



Based on 2 metrics: AOT40 and seasonal daytime mean O3 (M7, M12). Source-receptor matrices for AOT40 and M7,M12 calculated for 4 crops (wheat, rice, maize, soybean)

- Based on 3 month growing season
- Crop growing season, spatial distribution, production from GAEZ v.3 (IIASA & FAO) http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/
- AOT40: threshold metric, linear concentration-response function
- Mi: O3 mean without threshold; non-linear concentration-response function with built-in threshold (20 25 ppbV)
- Note: in general different metrics lead to different results!

### **Methodology Climate metrics**





Ozone: similar approach

# FASST Forcing comparison with literature European Commission

### Year 2000 anthropogenic forcing by component W/m<sup>2</sup>



#### NOx forcing efficiency for FASST emission regions (W/m²/kg)



#### Other climate metrics



#### (A)GWP & (A)GTP (1 year pulse emission)

- (Absolute) GWP and GTP calculated for various time horizons H following Fuglestvedt et al., 2010
- Including long-term feedbacks of NOx, NMVOC and SO2 on CH4 and hemispheric O3

FASST also calculates change in temperature dT(H) from AGTP(H) following Fuglestvedt et al., 2010 (i.e. sum of 1 year emission pulses with moving time horizon)



### Regional GWP100 values obtained from FASST



|                          | Literature<br>Global mean value<br>(range) | TM5-FASST Global mean (uncertainty range from forcing uncertainty) | TM5-<br>FASST<br>Africa | TM5-<br>FASST East<br>Asia, SE<br>Asia &<br>Pacific | TM5-<br>FASST<br>Latin<br>America &<br>Caribbean | TM5-<br>FASST N.<br>America &<br>Europe | TM5- FASST South, West & Central Asia |
|--------------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------|
|                          |                                            |                                                                    |                         |                                                     |                                                  |                                         |                                       |
| COa                      | 1.9 (1 <del>&gt;</del> 3)                  | $2.8 (2.0 \rightarrow 3.4)$                                        | 2.4                     | 3.0                                                 | 2.5                                              | 2.5                                     | 3.1                                   |
| NMVOC <sup>a</sup>       | 3.4 (2 <del>→</del> 7)                     | 7.5 (5.3 <del>→</del> 9.3)                                         | 7.0                     | 7.7                                                 | 7.3                                              | 6.9                                     | 8.1                                   |
| ВС                       | 680 (210 <del>→</del> 1500)                | 970 (0 <del>→</del> 1600)                                          | 1300                    | 630                                                 | 720                                              | 920                                     | 1200                                  |
| $SO_2 \rightarrow SO_4$  | -40 (-24 <del>→</del> -56)                 | -48 (-34 <del>→</del> -62)                                         | -82                     | -31                                                 | -57                                              | -39                                     | -71                                   |
| ОС                       | -69 (-25 <del>→</del> -129)                | -91 (-43 <del>→</del> -139)                                        | -116                    | -58                                                 | -76                                              | -61                                     | -107                                  |
| $NO_x \rightarrow O_3^a$ | -11 <sup>b</sup> (-36 → 1.6 <sup>b</sup> ) | -12 (-9 <del>→</del> -15)                                          | -15                     | -12                                                 | -21                                              | -5                                      | -10                                   |

Overview of GWP<sub>100</sub> values (mW/m²) from literature (as used in the UNEP/WMO (2011) assessment) together with FASST mean value and range obtained for the 56 countries/regions.

Including short term O<sub>3</sub>, long-term feedbacks on CH<sub>4</sub> lifetime and background O<sub>3</sub>. Value in brackets: inorganic aerosol

GWP(NO<sub>x</sub>) was assumed to be 0 in UNEP report (without range). Global mean and range reported here are from Fuglestvedt et al., 2010.



#### **Validation of TM5-FASST:**

Compare TM5-FASST with full TM5-CTM runs using the same set of emission scenarios as input





### Validation of TM5-FASST vs. full TM5 model



TM5-FASST vs TM5-CTM area-weighted anthropogenic PM2.5 ( $\mu g/m^3$ )



### TM5-FASST vs TM5-CTM annual mean O3 (ppbV)



## Validation health metrics



#### Pop-weighted annual PM2.5 (µg/m³)

#### 6-monthly mean of daily max. O3





# Validation health impacts (mortalities)



#### Total of 5-causes PM2.5 mortalities (Burnett et al., 2013)



2005

2030 LOW 2030 HIGH



#### FASST is relatively strong in

- Global coverage and global consistency in calculating impacts
- Speed of calculation: ideal for assessments requiring many scenario evaluations (optimization, impact attribution by region, by sector,...)
- Internal consistency between various impact categories (health, vegetation, deposition, climate)

#### FASST is relatively weak in

- Describing non-linear processes (O<sub>3</sub> chemistry, NO<sub>3</sub>-NH<sub>4</sub> system)
- Crops impacts less robust due to use of treshold statistics
- Role of inter-annual variability/climate change: current emissionconcentration coefficients based on one meteorological year (2001)



#### **OUTLOOK**

- Address non-linearities with additional perturbation runs
- Web-based public version scheduled for 2014
- Include flexibility on source-receptor region definition (remapping tool to FASST source regions)
- Include multiple source-receptor models (EMEP, HTAP,...)
- Until now one model- in future ensemble approach
- Additional impact modules
  - Deposition of N and S
  - Biosphere pollution climate interactions



### Thank you!