AEROCOM CONTRIBUTIONS TO TF HTAP – PHASE 2

Mian Chin, Michael Schulz, Stefan Kinne, and AeroCom modelers

AeroCom

- AeroCom Aerosol Comparisons between Observations and Models
- It was initiated 10 years ago in light of then new satellite aerosol products from MODIS, MISR, and others and a growing number of global models capable of simulating aerosols
- AeroCom had contributed to the HTAP phase 1 experiments (results presented in HTAP 2010 report, previous HTAP meetings, and publications)
- In the recent AeroCom workshop, several new model experiments were proposed, including contributions to the HTAP2 assessment, that are going to be coordinated to maximize the participation

AeroCom HTAP2 model experiments

Years:

 2008-2010 (high priority year is 2010 for HTAP2, but 2008 would be the base year for coordinated AeroCom activity with other model experiments, e.g., biomass burning, nitrate, and perturbation)

Emission:

- Anthropogenic: HTAP2
- Biomass burning: GFEDv3 daily (in conjunction with BB experiment)
- Volcano: Thomas Diehl (1980-2010) available through HTAP/AeroCom
- Dust and sea salt: model calculated based on winds and surface condisions – no unified emissions

Regions:

Two-tiered set of regional definitions with HTAP2 region masks

Simulation priority (Tier 1 regions)

Priorities for HTAP2 Simulations

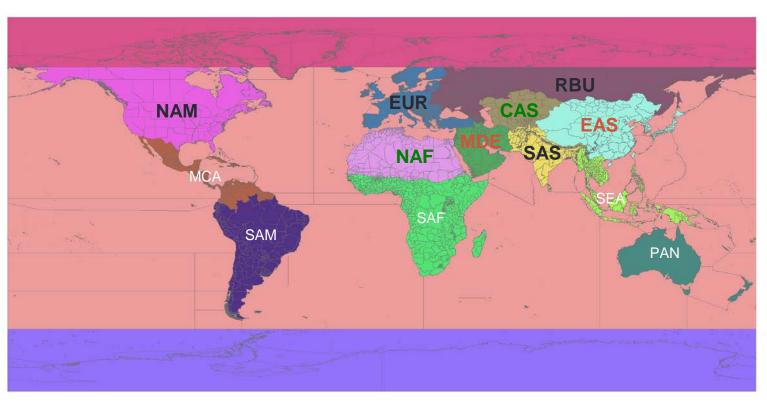
BASE Base Increase CH4 Conc CH4INC Decrease CH4 Conc CH4DEC

For aerosols, emissions from dust, volcanoes, and sea salt have also to be considered!!!

Highest Priority Next Priority Lower Priority

Region of Emissions Pe	erturbation
Global	GLO
N America	NAM
Europe	EUR
East Asia	EAS
South Asia	SAS
Rus, Bel, Ukr	RBU
Middle East	MDE
SE Asia	SEA
Central Asia	CAS
N Afr/Sahara/Sahel	NAF *
Mex/C America	MCA
Southern Africa	SAF
South America	SAM
Aust/NZ/Pacific	PAN
Oceans	OCN

			Components perturbations														Sector perturbations																					
	All NOX			(СО		VOC			SO2			NH3			PM			TRN			PIN			RES			ОТН			FIR			DST			
2008	2009	2010	2008	2009	2010	2008	2009	2010	2008	2009	2010	8007	2009	2010	8007	2009	2010	8007	2009	2010	2008	2009	2010	2008	2009	2010	2008	2009	2010	8007	2009	2010	8007	2009	2010	8007	2009	2010
		1			1			1															1			1			1						1			1
		1																																				
		1																																				
		1																																				1
		1																																				
		1																																				
		1																																				1
																																						1
																																						1
																																				П		
																																				П		
Г	Т																							Г												П		
	Т																							Г												\Box		


PM = Other Particulate Matter (BC, OC, PM10, PM2.5)

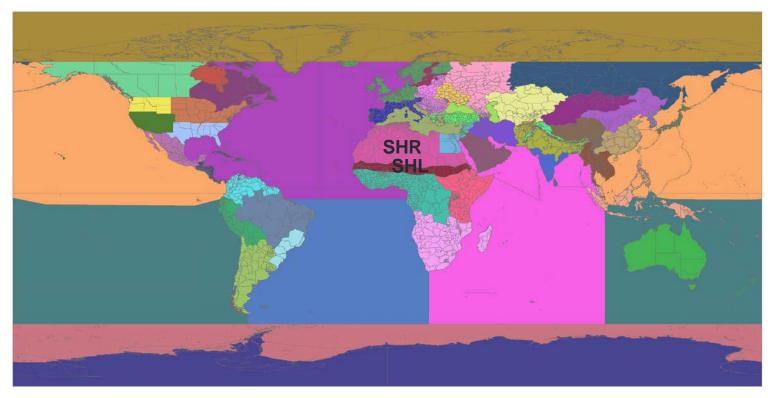
TRN = Ground Transport Sector; PIN = Power and Industry Sectors; RES = Residential Sector; OTH = Other Sectors (Ships, Aviation, Agriculture); FIR = Fire

DST = Dust * For dust, some models should divide the NAF source into separate source regions for the Sahara (091+092, in the Tier2 regions) and Sahel (093).

Tier 1 regions

- 17 regions including the whole globe, the oceans, Arctic, Antarctic, and 13 land mass regions
- Both source and receptor regions

xxx – anthro


xxx – dust

xxx - both

Region mask at: http://iek8wikis.iek.fz-juelich.de/HTAPWiki/WP2.1

Tier 2 regions

- The Tier 1 regions are divided into 60 sub-regions
- can be used individually or as groups in particular cases as source or receptor regions

Region mask at: http://iek8wikis.iek.fz-juelich.de/HTAPWiki/WP2.1

Priority

High priority:

- 2008, (2009,) 2010: Base simulation (global, all emissions)
- Base year: 20% reduction by pollutant emissions in GLO, NAM, EUR, EAS, SAS, RBU, MDE
- Base year: 20% reduction by sector emissions of TRN, PIN, and RES globally
- Base year: 20% reduction and 20% increase of dust emissions in GLO, EAS, CAS, MDE, NAF
- Base year: 30% reduction and 5x increase of fire emissions globally

Next priority:

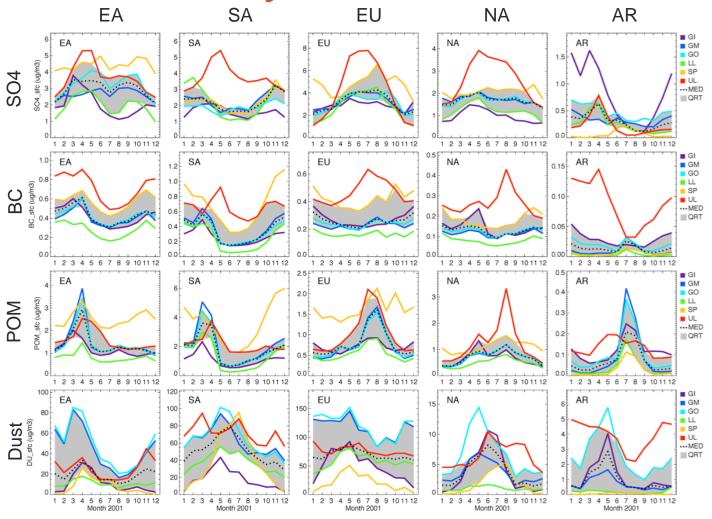
- Base year: 20% reduction (or other %) of fire emissions in NAM, RBU, SEA, SAF, SAM
- Base year: 20%reduction (or other %) of emissions separately in Sahara and Sahel (Tier-2)
- Base year: 20% reduction by sector emissions in NAM, EUR, EAS, SAS, RBU, MDE
- Base year: Other regions

Issues in HTAP1

Model evaluation:

- Large diversity in model simulated surface concentrations, but little model evaluation performed against surface and satellite observations

 no vetting process of acceptance
- In HTAP2, the credibility of participating models should be shown before making future prediction


PM2.5 components:

- Separate component is necessary PM2.5 or PM10 as a whole provide insufficient constraints
- No clear how to use PM2.5 or PM10 emissions since they only contain primary emission while large fraction of PM2.5 is secondary (e.g., sulfate, nitrate, ammonium), and there is also natural primary components (e.g. dust, seasalt)
- Using sulfate+BC+OC as PM2.5 is incorrect

Impact:

 Most impacts estimate focus on surface concentrations, but long-range transport should have more significant impact on the pollutant amount aloft

Model "diversity" in HTAP1

- Using median and percentiles are more appropriate than mean and standard deviation
- "Vetting" process to at least put scores for each model

Model evaluation

- Model output ("standard" diagnostics, similar to previous HTAP and AeroCom experiments)
- Minimal valuation datasets:
 - AOD (satellite, AERONET)
 - Surface concentrations
 - Vertical profiles

Timeline

- Start model simulations early 2014
- Model evaluation starts middle to late 2014
- Analysis starts late 2014