MICS-Asia Phase **Ⅲ**

(Modeling and Emission Inventories)

"Multi-scale model (Global, regional, urban)" Current Status

Scales: Mega-cities, City clusters:

China (Beijing-Tianjin-Hebei: haze issue, Pearl River Delta: Hundred-Million Yen Project, Shanghai-EXPO2010)

Japan (Tokyo and Osaka Metropolitan areas)

Increase of ozone conc. despite of NOx and VOC reduction,

Thailand (VOCs emission is controlled by Environmental Standard and then photochemical ozone; biomass burning)

Scales: Regional and global

Source/Receptor analysis at regional scales

Regional haze and transport

Increase of annual average concentration of ozone and haze

Decline of crops and forests (AOT40)

Global warming

Passive sampler campaign (Workshop and observation in EANET sites)

Collaborating with HTAP (joint meeting on 22-23 May, 2014)

MICS-Asia Phase III - Current Status

```
Meteorology: 45 km(D1); 15 km (D2); 5 km (D3):
 WRF model performance is done and data is ready
    CAS/IAP; ACAP; Univ. Tennessee
Emission: 0.25° x 0.25°
    Regrid to 45 km is ongoing (modelers can make it themselves)
Participating models:
Global models: provide IC/BC
    CHASER (2.8° x 2.8°) and GEOS-Chem v9-1-2 (2° x 2.5°); 3-hour
        outputs
Regional models:
    CAMx
    CUACE
    LOTUS-TNO
    NAQPMS
    RAMS-CMAQ
    RAQM2
    STEM-2011
    TAQM
    GEOS-Chem nested for 0.5° x 0.666°
    WRF-CMAQ (4.7.1; 5.0.1)
    WRF-Chem
```

MICS Meeting will be held at Nanning, Guangxi, China on 20-21 February 2014

Modeling Domains

Domain 1

Domain 2

Domain 3

EANET (Acid Deposition Monitoring Network in East Asia)

Other Monitoring Sites in East Asia)

DOE's Arctic Black Carbon Transport Study

- Russia Black Carbon Inventory -

Joshua S. Fu^{1,2,4}, Kan Huang¹, Elke L. Hodson³, Xinyi Dong¹, Joe Cresko³, Vitaly Y. Prikhodko⁴, John M. Storey⁴

¹ Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA

² Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

³ U.S. Department of Energy, Washington, DC, USA

⁴ Energy and Environmental Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Motivations

Arctic black carbon simulation questions:

- **❖**Large diversity of modeling BC from different models (Shindell et al., 2008)
- **❖**Strong underestimation of BC in Arctic (Shindell et al., 2008; Koch et al., 2009)
- **❖**Improper wet scavenging parameterizations (Bourgeois et al., 2011)

Model	Gas-phase	Aerosols	Prescribed lifetime	Horizontal Resolution
1. CAMCHEM	NO _x , CO	SO2, BC	Y	1.9
2. ECHAM5-HAMMOZ		SO2, BC		2.8
3. EMEP	NO _x , CO	SO2		1.0
4. FRSGC/UCI	NO _x , CO		Y	2.8
GEOSChem	NO_x	SO2, BC		2.0
6. GISS-PUCCINI	NO _x , CO	SO2, BC	Y	4.0
7. GMI	NO _x , CO	SO2, BC	Y	2.0
8. GOCART-2		SO2, BC		2.0
LMDz4-INCA		SO2, BC		2.5
LLNL-IMPACT	NO _x , CO	SO2, BC		2.0
 MOZARTGFDL 	NO _x , CO	SO2, BC	Y	1.9
MOZECH	NO _x , CO		Y	2.8
SPRINTARS		SO2, BC		1.1
STOCHEM-HadGEM1	NO _x , CO			3.8
STOCHEM-HadAM3	NOx, CO	SO2	Y	5.0
16. TM5-JRC	NO_x	SO2, BC		1.0
17. UM-CAM	NO _x , CO		Y	2.5

Shindell et al., 2008

Motivations

On December 17, 2009, in Copenhagen, the US Government committed to international cooperation to reduce black carbon (BC) emissions in and around the Arctic.

Arctic Black Carbon (BC) Initiative: A project funded by U.S. DOE

Activity #1:

Arctic BC Identification: Receptor modeling: Potential Source Contribution Function (PSCF) *(ORNL)*

Activity #2:

Establish BC Emissions Inventory of Russia (base year : 2010): Improve estimates of BC emissions in Russia and verification by model simulation (UTK)

Tasks: BC emissions from gas flaring, transportation, residential, power plants and Industries

Activity #3:

Demonstration of BC Emissions Reduction Technologies:

Demonstrate the best-available emissions reduction technologies for a subset of the identified sources in Russia. *(ORNL)*

Sources

Summary of Russian BC emissions: Local source data

Emission sector	Local (Russia) data source	
Gas Flaring	Laboratory experiments incorporated with local associated gas composition (1)	
Transportation	Local emission factors (on-road and idling) dependent on vehicles, emission standards and driving conditions (6)	
Residential	Local activity data and monthly temporal profile (2)	
Power plants	Raw PM emission data from Russian federal authorities (1)	
Industry	Raw PM emission data (various industrial sub-sectors) from Russian federal authorities (2)	

^{*} Red number indicates the number of Russian documents used

I. Gas flaring: a missing BC source

Russia possess the largest natural gas reserves of 24% in the world as of 2009. (Dmitry Volkov, 2008)

Annual gas flare volume in the global scale and in Russia

Estimation of gas flaring EF and emission in Russia

No field measurement available

Composition of the associated gas in Russia

Only laboratory test (McEwen and Johnson, 2012)

Associated Gas C	omposition	Percentage (%)	Heating Value (MJ/m ³)
Methane	CH ₄	61.7452	39.9012
Ethane	C_2H_6	7.7166	69.9213
Propane	C_3H_8	17.5915	101.3231
i-Butane	i-C ₄ H ₁₀	3.7653	133.1190
n-Butane	n-C ₄ H ₁₀	4.8729	134.0610
i-Pentanes	i-C ₅ H ₁₂	0.9822	148.4913
n-Pentane	n-C ₅ H ₁₂	0.9173	141.1918
i-Hexane	$i-C_6H_{14}$	0.5266	176.8591
n-Hexane	n - C_6H_{14}	0.2403	177.1907
i-Heptane	i-C ₇ H ₁₆	0.0274	205.0068
Benzene	C_6H_6	0.0017	147.3980
n-Heptane	$n-C_7H_{16}$	0.1014	205.0068
i-Octane	i-C ₈ H ₁₈	0.0256	232.8155
Toluene	C_7H_8	0.0688	373.0365
n-Octane	n-C ₈ H ₁₈	0.0017	232.8155
i-Nonane	i-C ₉ H ₂₀	0.0006	260.6688
n-Nonane	n-C ₉ H ₂₀	0.0015	260.6688
i-Decane	$i-C_{10}H_{22}$	0.0131	288.4775
n-Decane	n-C ₁₀ H ₂₂	0.0191	288.4775
Carbon dioxide	CO ₂	0.0382	-
Nitrogen	N_2	1.343	-
Hydrogen sulfide	H_2S	0	

 1.62 g/m^3

BC_{flaring} = Volume * Soot_{EF}

Volume: Gas flaring volume of Russia in 2010 was 35.6 BCM (billion cubic meters)

The BC emission from Russia's gas flaring in 2010 is estimated to be 57.6 Gg.

Spatial distribution of gas flaring BC emission

II. Transportation BC emission

Soot emission factors (g/min) during warm-up (cold start)

III. Residential BC emission

Residential BC emissions in Russia are based on fuel consumption data and EFs.

IV. Power plants & V. Industrial BC emission

BC emissions from power plants and industries in Russia are based on PM (particulate matter) data from Russian official figures and scaling factors (BC/PM_{2.5} ratio) from the U.S. EPA SPECIATE database.

Sectoral contributions to Russian anthropogenic BC emissions

Surface BC (or absorption coefficient) observation sites in the Arctic

GEOS-Chem Simulation vs. Observations

Impact from increased BC emission

Surface BC from the difference between simulation with new emission and the base case

The impact of the new emission on the increased surface BC concentration could reach over $2 \mu g/m^3$ in Russia and over $20 ng/m^3$ over the Arctic Circle.

Thanks.