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Modeling Global Transport and Impacts

Mercury

Projecting Future Hg under Policy (Selin, ETC, 2013)
Inverse analysis with GEOS-Chem (Song et al. in prep)

POPs
6 Climate and future PAHs (Friedman et al ES&T 2013)
O O PAHs and SOA (Friedman et al., AGU poster)
Q PCBs and PFOS/PFOA (under construction)
-
/g - Integrated Assessment
% i
e e e Quantifying US benefits from Hg treaty (in prep)
‘& — J PM and O3 co-benefits from US carbon policies
)MIII$ ) (Thompson et al., submitted; AGU talk

ply roporses on regional carbon policy results)
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Transport and Fate of Toxics

‘ _ Long-range
transport

Atmospheric
concentrations

Primary emissions: Secondary
Controlled by policies emissions, ma
Y P Y Ecosystem and

(national and global) increase due to

= climate change human impacts

Concentrations in =
environmental _ *"' i
reservoirs (ice, . 24 12

ocean, land)

http:/mit.edu/selingroup




(a)

Mga™)

5000
4000
3000
2000
1000 |

Future mercury projections

Anthropogenic Emissions

BAU

ca. 2008 ca. 2

I Primary Very

( ) Change in Atmospheric Deposition
5000 (2050-2015)

4000
3000

-

[ Primary

optimistic = —3909| [ Legacy

Present  A1B A2 B1 B2

Mercury Emissions Scenano

Zero AI1Et AE BI‘| E:.'IE

Mercury Emissions Scenario

Sunderland and Selin, Env Hlth, 2013

http:/mit.edu/selingroup



Modeling of Future Hg under Policy
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GEOS-Chem mercury simulation
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Inverse modeling to constrain emissions

(a) North Ocean (b) South Ocean
' ] (e) Asia emission
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» The average uncertainties are reduced from 100% to ~ 64%.
» Significant changes in the seasonality of ocean and soil emissions.
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GEOS-Chem mercury simulation
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Independent tests of the inversion

(a) Ship cruise (b) CARIBIC
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» The North Atlantic Ocean region was selected for both data sets.

» Independent data sets from ship cruise and aircraft measurements were
better reproduced using optimized emissions.

Ship cruise data source: Soerensen et al., 2010a; Soerensen et al., 2012
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PAHSs are increasing in the Arctic
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Figure 2. Observed (dots) and modeled tissue concentrations (median:
dotted lines; 95% uncertainty interval: solid lines) of S pollutant classes in
North East Arctic cod (Gadus morhua, blue), Blue mussel (Mytilus edulis,
brown) and Polar bear (Ursus maritimus, red). Sum PCBs includes
congeners 28, 52, 101, 105, 118, 138, 153, 156, and 180. Sum DDT
indudes p,p”-DDE and p,p’-TDE. Sum PAHs includes benzo[ghi]perylene,
benzo[a]pyrene, benzo[a]anthrancene, antracene, pyrene, phenanthrene,
fluoranthene, benzo[ e]pyrene, fluorene, acenaphtylene, and indeno[1,2,3-
cd]pyrene. Sum HCHs is a-HCH and y-HCH. De Laender et al., 2011
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GEOS-Chem POPs Simulation

Polycyclic Aromatic Hydrocarbons (PAHSs)
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oxidation) [Friedman and Selin, ES&T, 2012]
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What processes influence PAH transport?
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criteria for regional/global action (2.8 days)

O Previously thought that phase (particle vs. gas) was most
iImportant in controlling transport. This is not the case.

0 Simulation sensitive to: temperature sensitivity of partitioning,
on-particle oxidation

[Friedman and Selin, ES&T, 2012]
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Europe and Russia influence Spitsbergen
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Concentration (ng m3)

Europe and Russia influence Spitsbergen
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Future emissions and future climate

We scale the top (70%) global anthropogenic sources from the
Zhang and Tao (Atmos. Environ., 2009) inventory from —2000 to
2050:

Traditional biomass burning (57%o)
Domestic coal burning (4%)
Vehicle emissions (5%)

Coke production (4%) ‘

|
EMISSIONS GO DOWN

[Friedman et al.

ES&T 2013] Particles: OC ¥ BC WV Oxidants: OHA O
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Future emissions and future climate

We simulate present and future climate with GISS GCM meteorology (A1B)

Present climate | Future climate (IPCC
Al1B)
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years:
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ES&T 2013]
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Results: Volatility Matters
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Arctic stations can resolve climate vs. emissions
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Emissions to Impacts: Mercury
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Integrated Assessment for Mercury

Chemical Transport Modelling: GEOS-Chem

Zhang et al. 2012, Corbitt et al. 2011, Streets et al. 2009, Amos et
al. 2012

Ecosystem and Exposure Intake Modelling

Chen et al. 2012, Knightes et al. 2009, Mason et al. 2012, Sunderland

and Mason 2007, Sunderland 2007, Pirrone et al. 2010, Mahaffey et al.
2009

Health Impacts Modelling

Rice et al. 2010, Axelrad et al. 2007, Budtz-Jorgensen et al. 2007,
Virtanen et al. 2005, Roman et al. 2011, Guallar et al. 2002

Economic Modelling: US Regional Energy and
Environmental Policy Model (USREP)

Rausch 2010, Saari et al. 2013
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U.S. benefits from Minamata Convention

Cumulative benefits from Minamata: $38 billion
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Policies-to-impacts sensitivity analysis

Cumulative Welfare Benefits
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Integrated Assessment of PM and O,
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