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ABSTRACT: Two-year CMAQ simulations of gases and aerosols over the Southeast are 

evaluated using SEARCH observations for 2000 and 2001, both by direct comparison to 

observations and by projecting both datasets to the factor space using the Positive Matrix 

Factorization (PMF) model. Model performance for secondary species (sulfate, ozone) is 

generally better than for primary species (EC, CO). Nitrate concentrations are 

overestimated, mainly due to wintertime over-partitioning to the particulate phase. 

Projecting both observed and simulated constituents to the factor space using PMF, four 

common factors are resolved for each surface site (two urban sites and two rural sites). The 

resolved factors include (1) secondary sulfate, (2) secondary nitrate, (3) a fresh motor 

vehicle factor characterized by EC, OC, CO, NO and NOy, and (4) a mixed factor 

characterized by EC, OC, and CO. Performance for the sulfate and nitrate factors follow 

that of the corresponding driving species, while the motor-vehicle and “mixed” factors 

exhibit performance corresponding to that of primary species. Comparing observations and 
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CMAQ simulations in the projected space allow for an evaluation of the co-variability 

between species, an indicator of source impacts. The fact that similar factors were resolved 

by PMF from both the observations and the CMAQ simulations suggest that temporal 

processes related to emissions from specific source-categories, as well as the subsequent 

dispersion and reactivity, are well captured by the CMAQ model. The ability to identify 

additional factors can be enhanced by adding tracer species in CMAQ simulations. 

1. INTRODUCTION 

Air quality models generally fall into one of two classes: receptor-based and 

emission-based. Here, we combine and compare the two approaches in a novel way: we 

apply a receptor model to both simulated data from an emission-based model and in situ 

observations in the southeastern USA over a period of two years.  

The Southeastern Aerosol Research and Characterization project (SEARCH) is an 

ongoing aerosol measurement program beginning in August of 1998. SEARCH data have 

been used extensively in health effects research (Tolbert et al., 2001), and the Atlanta 

SEARCH site was an EPA Supersite location (Hansen et al., 2003). We use 

measurements at four SEARCH sites (Liu et al., 2004, 2006), including North 

Birmingham [BHM] (urban) and Centreville [CTR] (rural) in Alabama and Atlanta [JST] 

(urban) and Yorkville [YRK] (rural) in Georgia. These two urban-rural pairs across 

southeast US are well suited to evaluate the CMAQ model performances in rural and 

urban areas. For the emission-based model in this project, we use the simulation results 

for 2000 and 2001 using the EPA’s Models3 system (Marmur et al., 2004; Park et al., 

2006a), which includes the Fifth-Generation Pennsylvania State University/National 

Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) (Grell et al., 1995), 
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the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) (Houyoux et 

al., 2000) and Community Multiscale Air Quality (CMAQ, v4.3) (Byun and Ching, 1999) 

model. The long simulation period allows the application of factor analysis-based 

receptor models that require a relatively long record of data to derive both the source 

factors as well as daily source apportionment. 

A PCA-based receptor model (Cohn and Dennis, 1994 and Li et al., 1995) was used 

to examine the performance of the regional acid deposition model (RADM) (Chang et al., 

1987) and the Acid deposition and oxidant model (ADOM) (Venkatram et al., 1988). 

Since multiple interacting species are involved in a system, multivariate methods offer a 

means for characterizing the system by investigating  the covariance structures. In this 

work, the receptor-based model chosen is the positive matrix factorization (PMF) 

(Paatero and Tapper, 1994). PMF has been widely used in source apportionment studies 

(Lee et al., 1999; Chueinta et al., 2000, Paterson et al., 1999, Polissar et al., 1999, 2001). 

Previously it was applied to analyze SEARCH measurements (Kim et al., 2003; Kim 

2004 a,b; Liu et al., 2004, 2006; Lee et al., 2008).  

In this work, we apply PMF to CMAQ simulation results. To our knowledge this is 

the first attempt to apply PMF to long-term air quality model simulations. Previously, 

Shim et al. (2007) applied PMF to analyze aircraft observations of trace gases and 

corresponding simulations by a global chemical transport model. We took the same 

approach here to apply the PMF method in the analysis of PM2.5 and selected gas-phase 

measurements and CMAQ model results in the projected factor space. Compared to 

direct evaluations, the coherent gas and aerosol structures resulting from the same or co-

located sources, as evident in the data covariance, are evaluated simultaneously. In the 
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analysis, we first briefly describe the evaluation of the model performance on the species 

level. This “conventional” analysis provides the necessary basis to interpret the PMF 

analysis results that follow. 

2. Measurements and CMAQ simulations 

PM2.5 composition and gas phase measurements at four sites (BHM, CTR, JST, 

YRK) from January 1, 2000 to December 31, 2001 are analyzed in this study. Daily 

integrated PM2.5 and gas phase measurements are collected at the JST site. Every third 

day data are obtained at the others. A total of 600, 224, 230, and 219 samples are 

available for the JST, BHM, YRK, and CTR sites, respectively.  

There are occasional “missing data” (no reported measurements) for one or more 

species in the observational samples. The analytical uncertainty and detection limit for 

each chemical species are also provided for the observational data set. More detailed 

description of these measurements is found elsewhere (Liu et al., 2004). For model 

evaluation purpose, only those measured species which are simulated by CMAQ are used 

in this study. Particulate species include PM2.5 mass, sulfate (SO4
2-), nitrate (NO3

-), 

ammonium (NH4
+), organic carbon (OC), elemental carbon (EC), and dust elements 

(calculated as Soil = 2.20*Al + 3.48*Si + 1.63*Ca + 2.42*Fe + 1.94*Ti according to the 

IMPROVE protocol (Sisler et al., 1996)). The IMPROVE protocol is used because 

CMAQ only predicts one aggregated soil term, rather than the individual species. The 

development of trace element modeling within CMAQ is currently underway at Georgia-

Tech, but is beyond the scope of this work. Gaseous species include ozone (O3), carbon 

monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NO(x)), nitric acid gas (HNO3), 
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and total reactive nitrogen (NOy). Measurements of NOx are available only at the JST 

site; NO measurements are used for the other three sites. 

The same chemical constituents are simulated by using CMAQ (Byun and Ching, 

1999) during the same period for the eastern US. CMAQ is an Eulerian chemical 

transport model that simulates the emissions, transport, chemical transformation, and 

deposition of air pollutants. It employs a ‘‘one-atmosphere’’ approach and addresses 

complex interactions known to occur among multiple pollutants. The model, as applied 

here, uses a horizontal resolution of 36x36 km2, with 6 layers. This model setup reduced 

the computational burden associated with long simulations such as the one used here (2 

years). The relatively coarse grid spacing (both horizontally and vertically) are expected 

to introduce some biases as a result of artificial dilution. However, these are related 

mainly to spatial variability, while the focus of this work is the temporal variability in 

source/factor contributions in both ambient data and modeling results. The model domain 

covers most of North America in order to minimize the effects of boundary conditions on 

model results (Marmur et al., 2004; Park et al., 2006a). The SAPRC 99 (Carter, 2000) 

chemical mechanism was used. The EPA 1999 National Emissions Trends (NET99) 

inventory was used, processed by SMOKE (Houyoux et al., 2000). Meteorology was 

assimilated using the NCAR/Penn State MM5 model (Grell et al., 1994). Park et al. 

(2006b) found that MM5 simulated meteorological fields are adequate for air quality 

simulations. 

3. Method 
      We first compare CMAQ results to the observed gas and aerosol compositions. 

Among the statistical measures used in the comparison are the mean (M) and standard 

deviation (SD) of observed (O) and simulated (S) concentrations (MO, SDO, MS, SDS, 
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respectively), concentration fractional bias (FBC = 2(MS-MO)/(MS+MO), variability 

fractional bias (FBV = 2(SDS/MS-SDO/MO)(SDS/MS+SDO/MO) (Odman et al., 2002; 

Bolyan and Russell., 2005), and squared linear correlation coefficient (r2).  

In addition to this rather “conventional” evaluation, PMF was applied to the 

measurements and model results, respectively. The species chosen in PMF analysis are 

the same as in the work by Liu et al. (2006) expect for dusts, which do not correlate with 

other species. The algorithm of PMF was described in detail elsewhere (Paatero and 

Tapper, 1994; Paatero, 1997). Application of PMF requires that error estimates for the 

data be chosen judiciously so that the estimates reflect the quality and reliability of each 

data point because data with high uncertainties are weighted less in the analysis. We 

follow the approach by Polissar et al. (1998) to estimate the measurement uncertainties. 

For measurements above the detection limit, the overall uncertainty is the sum of the 

measurement uncertainty and one third of the detection limit. For measurement data 

below the detection limit, half of the detection limit is assigned to the concentration and 

the uncertainty is assigned to be 5/6 of the detection limit. For missing measurement data, 

the geometric mean is assigned to be the concentration and the uncertainty is assigned to 

be 4 times the geometric mean. In order to compare PMF projected model results with the 

observations on a consistent basis, we assign the model values corresponding to the 

missing measurements to be the geometric mean. For these values, their error estimates 

are 4 times of geometric mean of the model results. For the model results below the 

detection limit, we assign an uncertainty of 5/6 of the detection limit to these data. For the 

other model data, we first calculate the average relative overall uncertainties estimated 

previously for the measurements above the detection limits. The products of these 
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relative overall measurement uncertainties and simulated values are taken as model 

uncertainties.  

We follow the normal practice to experiment and find the optimal one with the most 

physically meaningful results. Analysis of the goodness of model fit, Q, as defined by 

Paatero (1997), is used to help determine the optimal number of factors. Fkey was used to 

reduce the rotation uncertainty. The final Q values are: JST (Observation: 6016 with data 

dimension of 6020, Model: 6113 with data dimension of 6000); BHM (Observation: 2046 

with data dimension of 2240, Model: 2156 with data dimension of 2240); YRK 

(Observation: 2451 with data dimension of 2300, Model: 1974 with data dimension of 

2300); CTR (Observation: 2579 with data dimension of 2190, Model: 2634 with data 

dimension of 2190).  

Multiple linear regression (MLR) was performed to regress the mass concentrations 

against the factor scores (Xie et al., 1999). Because PMF results have a portion of 

unexplained variation, the mass concentrations excluding the unexplained variation 

portion from G factors (factor contributions) are used to regress the factor scores to 

obtain the quantitative factor contributions for each resolved factor. We also exclude the 

dust components in the regression by using the IMPROVE protocol to estimate the dust 

contributions. The regression coefficients are used to transform the factor contribution 

results into the particle source contributions with physically meaningful units. The 

corresponding factors derived from the observed and simulated datasets are compared. 

4. Results and Discussion 

4.1 Composition Statistics 
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Detailed comparison statistics of the model simulations with the measurements are 

listed in Tables 1a-d. These indicate that the model tends to under-predict concentrations 

of primary species (such as EC, dust, SO2, and NO), with the exception of crustal 

material. The underprediction is likely due to the relatively coarse grid used (both 

horizontally and vertically). Despite this underprediction in concentrations, variability of 

primary species (represented here by FBV) is better simulated compared to mass 

concentrations, the performance of which is represented by FBC (i.e., for most primary 

species at most sites, the model better simulates variations in concentrations than the 

actual mass concentrations of these species).  The overprediction in crustal material is 

due to the fact that CMAQ mixes all of the resuspended soil dust within the first layer, 

while in reality many of them are removed locally by impaction on surfaces such as 

buildings, vehicles, and vegetation (DRI, 2000). Sulfate concentrations are well simulated 

compared to most other species (R2 values from 0.4 to 0.6) at the four sites. However, 

urban SO2 concentrations are underpredicted due to artificial dilution of emission sources 

in the coarse grid. Rural sites exhibit a slight overprediction of SO2 concentrations. The 

simulations of NOy and CO show a similar patterns compared with the measurements: the 

concentrations at urban sites are significantly underpredicted while the predictions at 

rural site are reasonably good. The annual average of simulated nitrate is higher than the 

observations largely because of the overestimates during cold seasons. Nitrate is well 

correlated at the two Alabama sites (R2≈0.5) and less so at the Georgia sites. The model 

captures seasonal variations in nitrate levels, but performs rather poorly in capturing 

intra-season/daily variations in nitrate levels. Comparing these performance findings to a 

study using a finer grid (Hu et al., 2004; 4 km horizontal resolution with 13 vertical 
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layers), better agreement with the observations was found for the primary species, but 

ozone and sulfate performance were similar to those presented here. 

Total S [SO2 + SO4
2-, expressed in μg S /m3] and total oxidized nitrogen [NOy + 

NO3
-, expressed in μg N /m3] are good measures for evaluating the model emission and 

dispersion estimates, as total S and N are less dependent on the simulated SO2-SO4
2- and 

NOy-NO3
- partitions. The model is able to simulate the observed variability in general as 

reflected by the reasonable R2 values (from 0.35 to 0.68). CMAQ simulated gas to 

particle phase partitions of sulfur and oxidized nitrogen can be evaluated with the 

observations by investigating the ratios of [SO2 (μg S /m3)]/[total S concentration (μg S 

/m3)] and [NOy (μg N /m3)] / [total oxidized N concentration (μg N/m3)], respectively. In 

order to compare the seasonal variations between the observations and CMAQ, ratios of 

SO2 to total sulfur and NOy to total oxidized nitrogen are processed using sym8 wavelet 

decomposition with soft heuristic thresholding and scaled noise options (Eskridge et al., 

1997, Lou and Loparo, 2004). Linear interpolation is used in places of missing data. 

Considering the amount of missing data at each site, only year 2000 data for the JST, 

YRK and CTR sites and year 2001 data for BHM site are processed (Figure 1). Seasonal 

cycles of the observed SO2 fractions are well captured by the model, although the model 

cannot capture all the higher-frequency variations. The observed NOy fractions show 

little variations, indicating that gas-phase NOy accounts for the bulk of atmospheric 

oxidized nitrogen. In comparison, the model results show a clear winter minimum. The 

gas-particle partition of the oxidized nitrogen species is particularly sensitive to 

temperature and the availability of ammonia gas. The underestimated CMAQ NOy 

fractions in winter imply that CMAQ apportions too much gas-phase N to nitrate during 
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cold seasons. It appears that either the nitrate mechanism of the model is overly sensitive 

to the variations in temperature or ammonia is overestimated in the model. 

 

4.2 PMF RESULTS 

The PMF analysis was carried out using nine common species that are both 

measured and simulated (SO2 was excluded from the analysis due to a high number of 

missing observations). Four factors are resolved for the observed and simulated datasets 

for the four sites, based on the goodness of model fit, Q (Paatero,  1997) and physical 

representation of the identified factors. The factors identified are: secondary sulfate, 

secondary nitrate, fresh motor vehicle, and a mixed factor. The linear correlations (R2 

values) between the factors from observed and simulated data (Table 2) typically follow 

the same patterns as in the “conventional” evaluation (Table 1), with the sulfate factor 

exhibiting the highest correlation, followed by the nitrate factor, and factors driven by 

primary species (motor vehicle and “mixed”) exhibiting poorer performance. Comparing 

observations and CMAQ simulations in the projected space allow for an evaluation of the 

co-variability between species, an indicator of source impacts. The fact that similar 

factors were resolved by PMF from both the observations and the CMAQ simulations 

suggest that temporal processes related to emissions from specific source-categories, as 

well as the subsequent dispersion and reactivity, are well captured by the CMAQ model. 

We use explained variations (EV) to define the factor profiles because the gas and 

particulate-phase concentrations of different species are not directly comparable. The 

value of EVij is the fraction of species i that can be explained by factor j (Paterson et al., 

1999). The average seasonal factor contributions were also compared at the four sites 
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between the observed and simulated datasets, though only results for the urban sites are 

shown (Figures 6,7), as the rural sites showed fairly similar seasonal patterns.  

The secondary sulfate factor has high concentrations of sulfate and ammonium 

(Figure 2) in both the simulated and the observed data among the four sites. This factor 

shows a strong seasonal variation with high concentrations during summertime (Figures 

6,7), reflecting, in part, the more active photochemical production of sulfate from SO2 in 

the summer. Not surprisingly, the factor accounts for a major fraction of ammonium. 

Sulfate in the southeast is neutralized (e.g., Liu et al., 2004). This factor is also mixed 

with HNO3 in both the simulated and observed data. The high correlation between the 

secondary sulfate and HNO3 is likely due to three reasons. First, sulfate and HNO3 are 

secondary photochemical products, and regional recirculation mixes these pollutants. 

Furthermore, the major primary sources of SO2 also tend to be NOx sources. Second, 

HNO3 competes with H2SO4 gas for available ammonia (Russell et al., 1983). The more 

abundant H2SO4 in summer leaves little ammonia for the conversion of HNO3 to 

particulate nitrate. Third, the cool temperatures in winter tend to favor nitrate formation. 

Hence, both sulfate and HNO3 tend to be higher in summer. The resolved CMAQ factor 

contributions are generally consistent with those for the measurements. The R2 values 

between the two datasets are relatively high, in the range of 0.5-0.6 (Table 2); the good 

correlations are reflected in the time series of the corresponding factors. The correlations 

are better at the rural sites than the urban sites. The meteorological model, MM5, has 

been shown to capture more of the inter-annual and synoptic-scale variability of 

important meteorological parameters such as surface temperature and wind speed, 

compared to fluctuations on the intra-day and diurnal time scales (Hogrefe et al., 2001, 
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2004). Not fully capturing the shorter time scales in the meteorological fields by MM5 

may partly explain the poorer performances in urban areas, where the variations on the 

intra-day and diurnal time scales are larger than rural sites. However, the CMAQ based 

factors are more “smeared” compared to the observation based ones. For example, in 

most cases, the CMAQ based sulfate factors contain more EC, a species not typically 

associated with sulfate formation, compared to the observation based factors. This is due 

mainly to the relatively coarse spatial setup of CMAQ. The CMAQ based factors are 

derived based on modeling results representing an average grid cell of 36 by 36 km, 

while the observation based factors are derived from point measurements (though even a 

finer grid, such as 12x12 km or 4x4 km would be much courser compared to a point 

measurement at a monitoring site). The point measurements typically allow for a more 

distinct breakdown of factors affecting trends in ambient concentrations at the receptor 

site, compared to the more mixed spatial representation of CMAQ. 

The secondary nitrate factor dominates the contributions to nitrate, as well as ~20% 

of the ammonium (Figures 3). Nitrate is formed in the atmosphere through oxidation of 

NOx. Nitric acid gas tends to condense to particle phase nitrate at low temperatures, high 

humidity, and in the presence of ammonia gas. Therefore high concentrations of nitrate 

occur mainly during winter in both of the simulated and observed data (Figure 6,7). 

However, the wintertime peaks are significantly higher for CMAQ. Time series of this 

factor for the observed and simulated datasets show similar structures but the day-to-day 

variations are not always the same. As a result, the R2 values between observed and 

simulated datasets are lower than for the sulfate factor, ranging from 0.2 to 0.5 (Table 2). 

High-frequency peaks likely influenced by local sources are not simulated well by the 
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model. This is partly because of the meteorological model’s poor performance in 

simulating shorter time-scale variations of the meteorological parameters. 

A fresh motor vehicle factor is resolved from both the observed and simulated 

datasets. It is represented by high concentrations of CO, NO, and NOy and the inclusion 

of OC and EC (Figure 4). It is labeled here as “fresh motor vehicle factor” because of its 

high concentrations of NO which has a short lifetime in the atmosphere. Both the factor 

profiles and factor contributions are different between the simulated and the 

observational data. Comparing to the observations, smaller portions of NO and greater 

portions of CO reside in this factor from the CMAQ results at the urban sites. This, as in 

the case of the sulfate factor, can be the result of “smearing” in the CMAQ results, 

limiting the ability to distinctly apportion NO between the nitrate and motor vehicle 

factors. This mixing or “smearing” of factors, as well as the relatively coarse setup of the 

vertical layers in CMAQ (limiting the model’s ability to simulate the effect of mixing 

layer heights on ground level concentrations) explain to some extent the discrepancies in 

seasonal patters between observation and modeling results (Figures 6,7). The OC/EC 

ratios of this factor are in the range of 1.14 to 1.58 (Table 3). The reported OC/EC ratio is 

typically 2.05 in fresh gasoline exhaust and 0.72 in diesel emissions (Cadle et al., 1999). 

Therefore, this factor represents a mixture of diesel emissions and gasoline-powered 

vehicles emissions. On average, the CMAQ results are lower at all of the four sites 

(Figure 6,7), likely due to the coarse grid used. Discrepancies between observed and 

simulated temporal variability are due, in part, by the use of “typical” emissions in 

CMAQ, while atypical traffic events are unaccounted for. 
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A mixed factor is also resolved at the four sites from simulated and observed data. 

This factor is represented by high concentrations of OC, EC and CO (Figure 5). Wood 

smoke and some local industry factors with high OC/EC ratios were resolved in a 

previous study (Liu et al., 2004). The mixed factor resolved in the current study is 

probably a combination of wood smoke, industry, and aged motor vehicle sources. The 

resolved OC/EC ratios from CMAQ for this factor are higher than those from the 

observational data (Table 3) at the urban sites, but are lower at the rural sites, which 

could be related to differences in secondary organic aerosol formation process between 

rural and urban locations. Without trace elements like those used by Liu et al. (2004, 

2006), we cannot resolve the contributions of various sources to this factor, which leads 

to additional uncertainties in the comparison.. The input emission inventory uncertainties 

(Mendoza-Dominguez and Russell, 2001) and the meteorological model’s ability to 

capture fine temporal scales may be the other reasons contributing to the disagreement 

between CMAQ and observation data. Better coherence might result from a finer grid 

resolution in the model, especially for the urban sites, where there are more intense 

emissions with significant chemical gradients (Sillman et al., 1990). Higher uncertainties 

and poorer spatial representation have also been reported for measuring EC and OC, 

which are the major elements in this factor (Wade et al., 2006). 

5. Summary 
CMAQ simulations for a period of two years (2000 and 2001) are evaluated using 

SEARCH observations in the Southeast, both by direct comparison to observations and 

by projection to the factor space sing PMF. Model performance for secondary species 

(sulfate, ozone) is generally better than for primary species (EC, CO). Nitrate 

concentrations are overestimated, mainly due to wintertime over-partitioning to the 
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particulate phase. Projecting both observed and simulated constituents to the factor space 

using PMF, four common factors, including sulfate, nitrate, a fresh motor vehicle, and a 

mixed factor, are resolved and compared. Performance for the sulfate and nitrate factors 

follow that of the corresponding driving species, while the motor-vehicle and “mixed” 

factors exhibit performance corresponding to that of primary species. The OC/EC ratios 

of the fresh motor vehicle factor reflect a mixture of gasoline and diesel vehicle exhausts. 

The mixed factor is likely a combination of aged motor vehicle, wood smoke, and some 

industry factors. The comparison between observations and CMAQ simulations in the 

projected space allow for an evaluation of the co-variability between species, an indicator 

of source impacts. The fact that similar factors were resolved by PMF from both the 

observations and the CMAQ simulations suggest that temporal processes related to 

emissions from specific source-categories, as well as the subsequent dispersion and 

reactivity, are well captured by the CMAQ model. Adding trace elements in CMAQ 

would allow a more detailed evaluation emissions and transport processes in the model. 
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Table 1. Comparison between trends in observed and simulated concentrations during 
2000-2001 at four SEARCH sites (MO – mean observed, MS – mean simulated, SDO – 
standard-deviation of observed, SDS – standard deviation of simulated, FBC – fractional 
bias in concentrations, FBV – fractional bias of variability, R2 – Pearson’s correlation 
coefficient) 

 
a. JST MO (μg/m3) SDO (μg/m3) MS (μg/m3) SDS (μg/m3) FBC FBV R2 
Mass(μg/m3) 17.18 8.14 22.31 11.27 0.26 0.06 0.42 
Total S (μgS/m3)  10.02 7.28 6.17 3.02 -0.48 -0.39 0.35 
SO42-(μg/m3) 4.71 3.02 4.72 2.99 0.00 -0.01 0.53 
Total N (μgN/m3)  32.9 26.1 13.35 5.71 -0.85 -0.60 0.35 
NO3- (μg/m3) 1 0.88 2.89 3.68 0.97 0.37 0.35 
NH4+(μg/m3) 2.59 1.18 2.52 1.44 -0.03 0.23 0.2 
EC (μg/m3) 1.52 1.04 1.02 0.48 -0.39 -0.37 0.36 
OC (μg/m3) 3.98 2.31 2.54 1.44 -0.44 -0.02 0.34 
Soil (μg/m3) 0.64 0.52 6.97 10.82 1.66 0.63 0.04 
O3(ppb)   23.94 12.48 35.54 18.33 0.39 -0.01 0.63 
CO (ppb)   472.77 385.04 329.95 127.18 -0.36 -0.72 0.36 
SO2(ppb)   6.79 5.98 3.52 2.09 -0.63 -0.39 0.42 
NO(ppb)   26.78 44.6 3.06 3.88 -1.59 -0.27 0.08 
HNO3(ppb)   1.29 1.28 1 1.03 -0.25 0.04 0.05 
NOy(ppb)   57.02 46.75 22.22 9.01 -0.88 -0.68 0.34 
        
b. BHM MO (ug/m3) SDO (ug/m3) MS (ug/m3) SDS (ug/m3) FBC FBV R2 
Mass(μg/m3) 18.63 9.85 17.76 8.74 -0.05 -0.07 0.46 
Total S (μgS/m3)  8.71 5.54 6.8 3.35 -0.25 -0.25 0.36 
SO42-(μg/m3) 4.87 3.32 4.76 3.09 -0.02 -0.05 0.49 
Total N (μgN/m3)  25.97 20.97 7.03 2.85 -1.15 -0.66 0.56 
NO3- (μg/m3) 1.04 0.9 1.68 2.62 0.47 0.57 0.5 
NH4+(μg/m3) 2.9 1.91 1.93 1.12 -0.40 -0.13 0.2 
EC (μg/m3) 2.08 1.56 0.5 0.24 -1.22 -0.44 0.35 
OC (μg/m3) 4.69 3.09 2.08 1.3 -0.77 -0.05 0.37 
Soil (μg/m3) 1.35 1.08 4.62 3.42 1.10 -0.08 0.12 
O3(ppb)   22.3 11.14 39.59 15.04 0.56 -0.27 0.57 
CO (ppb)   557.11 337.46 200.6 61.8 -0.94 -0.65 0.48 
SO2(ppb)   5.73 4.2 3.99 2.24 -0.36 -0.27 0.37 
NO(ppb)   25.26 31.6 0.74 0.71 -1.89 -0.26 0.18 
HNO3(ppb)   0.63 0.69 0.84 0.81 0.29 -0.13 0.06 
NOy(ppb)   44.96 38.66 11.64 4.36 -1.18 -0.79 0.51 
        
c. YRK MO (ug/m3) SDO (ug/m3) MS (ug/m3) SDS (ug/m3) FBC FBV R2 
Mass(μg/m3) 14.16 8.43 16.16 8.39 0.13 -0.14 0.27 
Total S (μgS/m3)  4.88 3.53 7.33 3.33 0.40 -0.46 0.41 
SO42-(μg/m3) 4.48 3.04 4.63 3.08 0.03 -0.02 0.59 
Total oxidized N 
(μgN/m3)  4.68 3.63 5.4 3.13 0.14 -0.29 0.68 
NO3- (μg/m3) 0.94 0.92 2.38 3.28 0.87 0.34 0.42 
NH4+(μg/m3) 2.23 1.53 2.19 1.21 -0.02 -0.22 0.15 
EC (μg/m3) 0.63 0.35 0.41 0.26 -0.42 0.13 0.33 
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OC (μg/m3) 3.1 2.06 1.76 1.14 -0.55 -0.03 0.3 
Soil (μg/m3) 0.31 0.32 4.11 2.5 1.72 -0.52 0.002 
O3(ppb)   40.47 15.27 42.04 15.88 0.04 0.00 0.66 
CO (ppb)   172.52 50.04 154.25 70.16 -0.11 0.44 0.31 
SO2(ppb)   2.59 2.52 4.43 2.28 0.52 -0.62 0.41 
NO(ppb)   0.68 1.69 0.57 1.01 -0.18 -0.34 0.4 
HNO3(ppb)   0.98 0.78 0.75 0.75 -0.27 0.23 0.22 
NOy(ppb)   7.83 6.08 8.51 4.62 0.08 -0.35 0.65 
        
d. CTR MO (ug/m3) SDO (ug/m3) MS (ug/m3) SDS (ug/m3) FBC FBV R2 
Mass(μg/m3) 12.84 7 12.41 6.43 -0.03 -0.05 0.39 
Total S (μgS/m3)  4.34 2.89 4.67 2.85 0.07 -0.09 0.56 
SO42-(μg/m3) 4.25 2.95 4.39 2.92 0.03 -0.04 0.59 
Total oxidized N 
(μgN/m3)  3.07 1.98 2.76 1.57 -0.11 -0.13 0.59 
NO3- (μg/m3) 0.36 0.4 1 1.78 0.94 0.46 0.48 
NH4+(μg/m3) 1.4 0.75 1.51 0.86 0.08 0.06 0.32 
EC (μg/m3) 0.6 0.38 0.3 0.15 -0.67 -0.24 0.42 
OC (μg/m3) 2.9 1.7 1.95 1.15 -0.39 0.01 0.52 
Soil (μg/m3) 0.43 0.43 2.7 1.79 1.45 -0.41 0.004 
O3(ppb)   37.22 12.92 43.41 11.81 0.15 -0.24 0.64 
CO (ppb)   187.77 46.5 105.8 28.44 -0.56 0.08 0.3 
SO2(ppb)   2.14 1.96 2.4 1.97 0.11 -0.11 0.6 
NO(ppb)   0.42 0.53 0.17 0.24 -0.85 0.11 0.72 
HNO3(ppb)   0.69 0.49 0.63 0.49 -0.09 0.09 0.3 
NOy(ppb)   5.12 3.32 4.34 2.26 -0.16 -0.22 0.57 
 

 

 

 

 

 

Table 2. Correlation coefficient values (R2) for pairwise comparisons of source                  
contributions between observed and CMAQ simulated data resolved by PMF for the four 

sites. 

  R2 ( Obs. vs. CMAQ) 
  JST BHM  YRK CTR 
Sulfate 0.55 0.48 0.64 0.61 
Nitrate  0.28 0.45 0.38 0.47 
Fresh Motor vehicle  0.12 0.17 0.34 0.30 
Mixed  0.23 0.31 0.27 0.37 
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Table 3. OC/EC ratios of source factors between observed and CMAQ simulated 
data resolved by PMF for the four sites 

  
Fresh Motor vehicle 

(OC/EC) 
Mixed factor 

(OC/EC) 
JST Observation 1.48 2.91 
JST CMAQ 1.58 3.82 
BHM Observation 1.27 2.30 
BHM CMAQ 1.44 6.46 
YRK Observation 1.35 6.08 
YRK CMAQ 1.20 4.83 
CTR Observation 1.33 5.95 
CTR CMAQ 1.14 5.42 
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Figure captions 

Figure 1. De-noised temporal variations of observed and simulated SO2 and NOy 

fractions at the four sites.  

Figure 2. Factor profiles of the sulfate factors in the observed and simulated datasets 

resolved by PMF at the four sites. 

Figure 3. Factor profiles of the nitrate factors in the observed and simulated datasets 

resolved by PMF at the four sites. 

Figure 4. Factor profiles of the fresh motor vehicle factors in the observed and simulated 

datasets resolved by PMF at the four sites. 

Figure 5. Factor profiles of the mixed factors in the observed and simulated datasets 

resolved by PMF at the four sites. 

Figure 6. Comparison of the seasonal averages of factor concentrations for the observed 

and simulated data at JST site.  

Figure 7. Comparison of the seasonal averages of factor concentrations for the observed 

and simulated data at the BHM site.  
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