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e We present a downscaling method using Fitted Empirical Orthogonal Functions (F-EOFs).
e We illustrate our downscaling method, for ozone levels over the US.

e We compare our method to linear and Principal Components (PC) regression methods.

o F-EOFs regression shows the best predictive ability compared to the other methods.
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Downscaling is a technique that is used to extract high-resolution information from regional scale var-
iables produced by coarse resolution models such as Chemical Transport Models (CTMs). Statistical
downscaling methods in geophysics often rely on Empirical Orthogonal Functions (EOFs). EOFs are
spatial Principal Components (PCs) that display space-time modes of variability of a quantity over a
region. Here we present a novel statistical downscaling method that employs Fitted Empirical Orthog-
onal Functions (F-EOFs) to provide local forecasts. F-EOFs differ from EOFs in that they represent space-
time variations associated with a particular location through the use of inverse regression. We illustrate
our downscaling method, for ozone levels over the US, with the Regional chEmical trAnsport Model
(REAM) whose outputs are over 70 by 70 km grid cells. We use ground level ozone observations from
monitoring stations within the south-eastern US region to downscale REAM. We select the first leading
F-EOFs and regress our observations on the corresponding F-EOF loadings. We also compare our results
to linear regression and PC regression. The regression on F-EOFs shows the best predictive ability. To
examine the consistency of our results we repeat the analysis for different fitting and validation periods.
Furthermore, in our application, PFC regression also outperforms PC regression as a dimension reduction
technique.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ground-level ozone is a pollutant and is regulated under the Na-
tional Ambient Air Quality Standards not to exceed 0.075 parts per

Ground-level ozone (03) is formed by a chemical reaction be-
tween volatile organic compounds (VOC) — such as automobile
exhaust —, carbon monoxide (CO), and oxides of nitrogen (NOy)
with the existence of sunlight. Studies have shown that the expo-
sure to elevated levels of ozone has major effects on human health
(e.g. respiratory system problems) and vegetation (EPA, 2006).
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million (ppm) as a measure over an 8-h average period in the USA.
To manage the levels of tropospheric ozone, accurate spatial and
temporal forecasts of its levels are needed.

Various statistical techniques have been used in the literature to
model and forecast ground-level ozone, e.g. Sahu et al. (2007).
Alternatively, numerical models were developed to produce fore-
casts of ozone and other atmospheric variables using meteorolog-
ical information. Those models are known as Chemical Transport
Models (CTMs). Although statistical methods were found to be
satisfactory in predicting ozone, they do not capture the chemical
and physical processes as well as CTMs. In general, CTMs produce
simulations of climatological variables at large resolution, but as
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computing power increases CTMs became more able to produce
forecasts on a relatively small resolution (Eder et al. (2009), Lee
et al. (2009), and Ngan et al. (2012)). CTMs produce their fore-
casts as an average over a grid cell. Although some CTMs provide
forecasts at a fine grid cell resolution, in practice, point-specific
information are needed. One approach that can improve the fore-
casts provided by CTMs is to combine the actual observations
(usually produced by monitoring stations) with the CTM outputs.
However, the model outputs and the actual ozone observations
have different scales. Model outputs are produced as averages over
a grid cell and ozone observations are recorded as points. To
overcome the difference in scale issue we can downscale the model
output to a point resolution. Downscaling is a technique that is used
to extract high-resolution information from large/regional scale
variables produced by numerical models. Many downscaling
methods are available but pertain mostly to the climate modelling
community. Statistical downscaling is based on developing a sta-
tistical relationship between observed small-scale variables (pre-
dictands) and large-scale variables (predictors) from a numerical
model. The main advantage of statistical downscaling methods is
that they are computationally inexpensive and appropriate when
computational resources are limited (Wilby et al, 2004).
Regression-based downscaling is a widely applied method in
practice. It formalizes mathematically the relationship between
large-scale predictors and the small-scale predictand.

There is an advantage in using statistical downscaling on coarse
resolution air quality models instead of using a high resolution
CTMs: downscaling combines the benefits of both statistical
methods and CTMs. Statistical downscaling provide point-specific
forecasts taking into consideration the physical and chemical pro-
cess at a scale that is not available to even a fine scale CTM due to the
local characteristics of the station, whereas CTMs show skills in the
highly non-linear modelling of chemistry and transport at a more
regional scale. Downscaling methods can be applied in air quality
management. Indeed, on can downscale CTM forecasts, by using the
established relationship between the model and observations that
were estimated using historical data, to predict local air quality.

Few studies about downscaling air quality model have been
published in the literature. Guillas et al. (2008) applied a two-step
regression technique to downscale an air quality model in order to
improve local forecasts at Use U.S. Environmental Protection
Agency (EPA) monitoring stations from the Atlanta area. This
improved ozone forecasts by up to 25% compared to the direct use
of the numerical model. Using Bayesian approaches to downscale
air quality has gained momentum recently (Berrocal et al., 2009,
2010, 2012).

Statistical downscaling often involves the use of multiple
regression to downscale the data. However, this may produce un-
stable results when the predictors are correlated amongst each
other (multicollinearity) or when the number of predictors is large.
To overcome these problems, Principal Components (PCs) can be
used to reduce the dimensionality of predictors and to eliminate
multicollinearity. A number of studies in the climate literature
make use of PC regression to downscale, e.g. Kim et al. (1984),
Kidson and Thompson (1998), Hessami et al. (2008). In some
downscaling scenarios the predictand does not necessarily have to
be the same variable as the predictors, but they are strongly related
to each other. For example, Schubert and Henderson-Sellers (1997)
employed GCM-simulated pressure fields to estimate local tem-
perature. Furthermore, predictors can be combined: Benestad
(2002) downscaled temperatures over Northern Europe using so-
called common EOFs that jointly reduce dimension of several
spatial predictors, which is an improvement upon simple EOFs.

In this paper we present a new statistical downscaling approach
that relies on Principal Fitted Components (PFC) regression (Cook,

2007). This technique reduces the dimension of predictors in a
regression model with reference to the values of the predictand. We
downscale an air quality model using PFC regression and compare
the predictive ability of this technique to other downscaling tech-
niques that are widely used in literature: multiple linear regression
and PC regression. In the geophysical sciences, PCs are also called
Empirical Orthogonal Functions EOFs (Lorenz, 1956). Indeed, EOFs
are spatial PCs corresponding to the space-time variations of a
quantity over a specific region. We introduce here a new kind of
EOFs: Fitted Empirical Orthogonal Functions (F-EOFs). F-EOFs are
spatial Principal Fitted Components (PFCs) that represent space-
time variations over a region but are associated with a particular
location through the use of inverse regression. The general method
was developed by Cook (2007); it consists of obtaining Principal
Components with reference to the response variable. PFCs are
computed by performing PCA using the covariance matrix of fitted
values that results from the inverse regression of the predictors on
a vector valued function of the response. The simulation studies in
Cook (2007) indicate that PFCs outperformed PCs as a regression
dimension reduction technique and that PFC regression models
exhibit better predictive ability than the Ordinary Least Squares
(OLS) and PC regression models. In a follow up study Cook and
Forzani (2008) presented a comprehensive theory of PFCs and
further explained the advantages PFCs has (as a regression
dimension reduction method) over PCs. The authors also identified
the relationship between the PFC regression model and other
methods (i.e. sliced inverse regression, partial and ordinary least
squares, and seeded reductions). Johnson (2008) analysed the
properties of PFCs and derived some theoretical properties. He
studied Cook’s simulation results and argued that PFCs out-
performed PCs under Cook’s model assumptions. Finally, Cook and
Li (2009) extended the PFC methodology to regressions with cat-
egorical predictors or a mixture of categorical and continuous
predictors.

One might question the plausibility of the use of the response to
develop the predictors. Cook (2007) recounts the arguments be-
tween prominent statisticians: R.A. Fisher, F. Mosteller and J.W.
Tukey being sceptical of nature’s malice to relate the response to
the least important PCs, and D.R. Cox, H. Hotelling, D.M. Hawkins
and L.P. Fatti being open to the idea that in nature it is helpful to use
the response to choose the predictors. Here, we refrain from
entering the philosophical debate and argue that empirical evi-
dence, in simulations (Cook, 2007) and in our case study;, is inviting
us to use the response in the choice of predictors. To our knowl-
edge, there is no application of PFCs as a downscaling method in the
literature. We present here the first of such application, where we
downscale an air quality model.

In the next section we introduce the REAM modelling system.
Section 3 describes the data that were used to perform the analysis,
as well as the methodology that was followed. Section 4 presents
the results of the analysis, and finally Section 5 is devoted to a
discussion of the results and concluding remarks.

2. The REAM modelling system

REAM is the Regional chEmical trAnsport Model (e.g. Choi et al.,
2008a,b; Wang et al., 2006, 2009; Zeng et al., 2006, Zhao et al,,
2009, 2010). It adopts the photochemical, dry deposition, and
biogenic emission modules from the GEOS-CHEM model, see (Bey
et al, 2001) and references therein. We use the same model
setup by Choi et al. (2008b) over North America. Anthropogenic
and biogenic emission algorithms and inventories are adapted from
the GEOS-CHEM model (Choi et al., 2005, 2008a). One exception is
that the emissions of NOy, CO, and (>C4 alkanes) over the US are
prepared by Sparse Matrix Operator Kernel Emissions (SMOKE)
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model (Houyoux et al., 2000) for 2005 projected from the VISTAS
2002 emission inventory.

We use the National Center for Atmospheric Research/Penn
State MM5 dynamical model to provide the meteorological fields
using four-dimensional data assimilation based on the National
Center for Environmental Prediction (NCEP) reanalysis, rawin-
sonde, and surface observations (Georg et al., 1994). The REAM
model used in this study has 70 km horizontal resolution with 21
vertical layers in the troposphere. The five extra grids on each side
of the REAM domain are for minimizing potential transport
anomalies near the boundary. The 2005 summertime GEOS-CHEM
global chemical transport model (version 7.2) simulations are used
to specify initial and boundary conditions for trace gases for June—
August 2005 time period. The regional simulations are carried out
in the last two weeks of May for spin up, and used to determine the
initial chemical condition in the troposphere for the June—August
2005 simulation. Ozone 24 h ahead predictions are obtained from
REAM. REAM produces forecasts within 104 grid cells (which cover
the south-eastern region in the US) with 70 km spatial resolution.
Out of the 104 and grid cells 5 overlap with the sea, as shown in
Fig. 1. We do not consider these grid cells in our study.

3. Data and methods
3.1. Observations
The measurements are hourly ozone observations in south-

eastern U.S.A. in the summer (June—August) of 2005 at stations
maintained by the US Environmental Protection Agency (EPA). Data

are available for 109 monitoring stations but some stations (in
particular 15 stations) were outside or at the border of the grid cells
range of REAM. As we want to relate regional patterns of ozone to
local observations, we discarded these 15 stations and carried out
the analysis for the remaining 94 stations, shown in Fig. 1. Since
some of the stations had missing values (4.5% of the data were
missing) we use linear interpolation to estimate the missing values.
Prior to carrying out the analysis the data need to be centred to
avoid the non stationary features that would prevent us from
applying our statistical approach: one needs to keep stationary
distributions in the errors to carry out regression. Due to the
diurnal nature of the data, we centred the data by removing the
diurnal cycle. The data were highly skewed for some of the stations,
and this could distort the relationships in the models since our
methodology in build under the assumption that errors have
Gaussian distributions. To overcome this, we converted the ozone
data to the square root scale to remove the skewness in the data. In
our main analysis, for each of the 94 stations, we use the period
from 6 June to 25 June as historical period and from 26 June to 30
June as forecasting period (i.e. validation period).

3.2. PCs and PFCs

3.2.1. Principal Component Analysis

Principal Component Analysis (PCA) is a technique for creating
new variables which are a linear combination of the original vari-
ables (Anderson, 2003). Let X(t) = Xy(t), X(t), ..., Xp(t) be ann x p
centred matrix of predictors, where p is the number of predictors,
and t = 1, 2,..., n (n is the sample size). The linear combinations:

Fig. 1. Ozone monitoring stations (x) and REAM grid cells (circles).
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Y; = alX, Y, = alX, .., Y, = alX are the Principal Compo-
nents, when ay, a,..., a, are the eigenvectors that correspond to the
eigenvalues Ay > 4, >... > A, of the covariance matrix of predictors
= = Var(X). The a's are known as PC directions or PC loadings. In PCA,
the new variables are formed such that the first variable accounts
for the maximum normalized variance in the original data. The
second variable accounts for the maximum normalized variance in
the original data uncorrelated to the first variable and the pth
variable accounts for the maximum variation uncorrelated to the
first p — 1 variables. Thus, the first few PCs should contain a sig-
nificant amount of information from the original data. PCA is a
dimension reduction technique since one could use the first few
PCs to represent the original data if the number of predictors is
significantly large. As a result, PCs are often employed in regression
to replace the original predictors. The use of PCs in regression
overcomes the problem of predictors being correlated amongst
each other (assuming normality).

3.2.2. Principal Fitted Component analysis

There are concerns regarding the use of PC as predictors in a
regression model. First, PCs are obtained from the predictors
without reference to the response variable. It may not be the case
that the response variable depends upon the first few PCs but upon a
smaller mode of variability. Second, PCs are not invariant (remains
unchanged under some transformation) or equivariant (changes in a
convenient way under some transformations) under full rank linear
transformations of the predictors. PFCs as a dimension reduction
approach was first presented by Cook (2007). PFCs have two major
advantages over PCs when used as a dimension reduction in
regression. They can be tailored to the value of the response and they
are equivariant under full rank transformation of the predictors.

PFCs are obtained by gaining sufficient information about the
response Y from the predictors X. One way to do this is by using
inverse regression. In the inverse regression we obtain E[X|Y = y],
which consists of p one dimensional regressions instead of the
forward regression E[Y|X = x].

Assume that v, = 8 f, where 8 ¢ R¥",d <r,f, e R" is a known
vector-valued function of the response with =y f, = 0 (i.e. f is
centred around its mean) and y is used to index observations
instead of the usual “i” (Cook, 2007). The predictors X, are
regressed on fy, which is a function of the response Y. The function
f, can be formed using a particular basis function gy and fj, is cen-
tred: fy = g, — 8. An example of commonly used basis is the
polynomial basis:

g = (v ) (1)

Let iﬁt be the sample covariance matrix of X (which is the n x p
matrix of fitted values resulting from the regression of X, on f):

2 = (2)

~T_ =T ~T
Then ®;X, ®,X, ..., ®,X are called Principal Fitted Compo-

nents, where @1, ey <T>p are the eigenvectors that corresponds to
the eigenvalues ﬂt, E’;t, ﬁﬁt of the covariance matrix f:ﬁt.
Therefore, PFCs are obtained by performing PCA on the fitted
sample covariance matrix.

Few PFCs (which account for high variation in the original data
with reference to the response) can be used in the regression model
instead of the original high dimensional predictors. Since PFCs are
obtained using the response, they outperform PCs as regressors in
many situations (Cook, 2007). However, the use of PFCs as pre-
dictors does not eliminate multicollinearity (Cook, 2007). Then PFC

scores are obtained by multiplying the eigenvectors of iﬁt by X.
Similarly to PCA, the choice of the number of PFCs to be considered
in a regression model is rather subjective.

3.3. Methodology

Simple linear regression, PC regression, and PFC regression are
employed to downscale the REAM model output and thus forecast
local ozone levels. Models are fitted to the historical data, and then
used to predict hourly ozone observations over the validation
period. The Root Mean Square Error (RMSE) measures the fore-
casting accuracy. The overall results will be discussed in details in
Section 4.

3.3.1. Downscaling REAM outputs by linear regression

For each station, we fit a linear regression model by regressing
hourly ozone observations on the grid cell outputs that includes the
station:

Or = Bo +B1Me + & (3)

where O; is hourly ozone observations, M; is the REAM model
output of the grid cell that include the station, §y and (3 are
regression model parameters and are estimated by the method of
least squares, and ¢; is a normal error vector with mean O and a
constant variance ¢2.

3.3.2. Downscaling REAM outputs by PC regression

The approach presented in Section 3.3.1, where we regress ozone
observations on the grid cell that contains the station may not be
very efficient. Indeed, the CTM may be misaligned and local ozone
may be more closely related to regional conditions rather than the
average over the grid cell. REAM forecasts ozone levels over p = 99
grid cells, and considering all 99 cells in the regression model raises
the problem of “over fitting” — the model may have good fitting
performance but poor predictive performance. To tackle this prob-
lem, we can reduce the number of predictors by applying PCA to the
grid cells model output. Then, we can select a few PCs that capture
the highest variation in the original grid cells data, and use them as
predictors in the regression model. For each station we regress
hourly ozone observations on a selected number of PCs:

M
Or = ag+ > amZm(t) +er (4)

m=1

where M is the number of PCs in the model, M < p =99, ag, a1,..., &m
are model parameters, Z1(t), Zx(t),..., Zm(t) are PC scores, t = 1, 2,...,
n, and & is a normal error vector with mean 0 and a constant
variance ¢°.

There are numerous methods that can be employed to determine
the number of PCs to be used in regression. A widely used PC selec-
tion technique chooses PCs that account for a large amount of vari-
ation of the predictors. However, PCs with low variance are not
necessarily redundant. A PC might explain a small amount of the
variation in the predictors but it could be a significant predictor for
the dependent variable. Examples of such cases can be found in Kung
and Sharif (1980) and Jolliffe (1982). For this purpose, in this paper
we use a leave-one-out cross validation method (Mertens et al., 1995)
where the PRESS (PREdicted Sum of Square) value helps determine
the number of PCs to maintain in a regression model.

3.3.3. Downscaling REAM outputs by PFC regression
We downscale the REAM output by first applying a PFC analysis
to reduce the dimension of the model outputs. We used a
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polynomial basis function to compute the F-EOFs (we have
explored other basis functions, e.g. slice, when computing the F-
EOFs and polynomial basis function seemed to give better results
than the other methods in our application). Then, we select a few F-
EOFs as predictors in the regression model. For each station we
regress hourly ozone observations on these F-EOFs:

D
Or = b0+ Y 04Pq(t) + et (5)
d=1

where D is the number of F-EOFs in the model, D < p = 99, g, 01,...,
0g are model parameters, P1(t), Py(t),..., P4(t) are PFC scores, t = 1,
2,...,n,and & is a normal error vector with mean 0 and a constant

variance ¢2.

4. Results

Spatial plots of EOFs and F-EOFs can be very informative. An EOF
plot shows the loadings of the corresponding PC or PFC
geographically. It displays the locations at which PCs and PFCs
contribute more strongly or weakly. The EOFs and the F-EOFs are
associated with eigenspaces of dimension one, so the sign of the
contribution does not matter.

Fig. 2 shows the leading EOFs. The EOF distributions reflect the
general variation of ozone, the value of which are higher over
emission regions and over land than over ocean. EOF1 illustrates
mainly the ozone gradient decreasing towards the eastern coast-
line, and EOF4 shows the ozone gradient decreasing towards the
southern coastline, reflecting generally much lower ozone con-
centrations over the ocean than land. EOF2 and EOF3 are associated
with regional ozone distribution patterns, in which the variations
are lower in Alabama and northern Georgia, and Mississippi and
Tennessee, respectively. These spatial patterns are likely driven by
meteorological systems that transport low ozone air masses to
these regions.

Figs. 3 and 4 show the first F-EOFs of REAM outputs corre-
sponding to eight selected stations over 6—25 June 2005. Stations
35 and 60 are generally associated with the west to east gradient of
low ozone in the eastern coastline, which is somewhat similar to
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the EOF1 distribution (Fig. 3). The F-EOFs of Stations 75 and 5 have a
mixture of EOF1 and EOF4 distributions, showing lower ozone
variation in eastern and southern coastlines. The F-EOF of Station
51 has some resemblance to EOF2, showing lower ozone variation
in Mississippi and Tennessee. Station 66 has an F-EOF similar to
EOF3, showing low variation in Alabama and northern Georgia,
although it extends further to eastern South Carolina. The F-EOF of
Stations 96 and 83 are more complicated, none of which is a clear
extension of the 4 EOFs. The uniqueness of the first F-EOFs implies
that the PFC method is able to more efficiently reduce the dimen-
sion of the problem and capture the regional distribution pattern
specifically relevant to the site of interest.

We first performed a simple simulation to gain further under-
standing of the features of PCs and PFCs in our context. The simu-
lation is similar to the simulation in Cook (2007). The only
difference is that the random variables generated here are seasonal,
which mimics our situation where a diurnal cycle is present (and
removed). First, we generate Y as a normal random variable with
mean 0 and variance o%, and has size n We added a seasonal pattern
to the generated random variable. For simplicity the seasonality is a
repetitive cycle of 10 values: 1, 2,..., 10. Second, we generate X,
which is an n x p matrix, according to the inverse model:

Xy =Ty +oe (6)

where I'=(1,0,...,0)Tand ¢ > 0, and ¢ is a standard normal random
variable. The number of predictors is p = 100. We performed the
simulation with sample sizes n = 200, 500, and 1000. The forward
regression model is:

Y = Oy + (xTX+ UY\XS

where X is the observed value of X, oy is constant, and ¢ is a
standard normal random variable. Finally, we apply the three ap-
proaches in Section 3.3 to model the simulated data. For a
straightforward comparison amongst all methods, as in Cook
(2007), we restrict ourselves to d = 1 (d is the dimension of the
reduced space, i.e. the number of PCs and PFCs to be included in the
regression model). We fit the PC model with one PC and the PFC
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Fig. 2. The first four leading EOFs of the gridded REAM output from 6 June to 25 June 2005.
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Fig. 3. The first F-EOFs (polynomial basis function with degree 1) of the REAM outputs for four stations, estimated over 6—25 June 2005. The location of the station is marked by ‘x’.

model with one PFC (fy = y — ¥;). For each simulated dataset we
use the first 80% as a fitting period and the remaining as a validation
period. Table 1 summarizes the results based on 100 replications.
On average the PFC model seems to show a better predictive ability
than the other models at all sample sizes.

According to the simulation results, PFCs performs compara-
tively better when the sample size is small compared to the
dimension of predictors. This is the situation for the ozone data in
hand, as the sample size (fitting period) is relatively small
compared to the number of grid cells. Using the three approaches
presented in Section 3.3, we use the period from 6 to 25 June as a
training and the period from 26 to 30 June as validation period.
Although the data were converted to the square root scale to adjust

F-EOF1 Loadings (Station 35)
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F-EOF1 Loadings (Station 75)
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the skewness, the plots and tables presented in this section show
the results after converting them back to the original scale. The
number of PCs selected in the regression model was determined
after performing the leave one out cross validation presented by
Mertens et al. (1995). We performed the cross validation for each
stations individually and limited the number of PCs in the regres-
sion model to a maximum of 20 to avoid over fitting. The cross
validation results show that each station should be fitted with a
different number of PCs. For example, for some stations using only
one PC in the regression model seems to be enough, while for other
stations all 20 PCs should be used as predictors to obtain significant
results. Hence, according to the cross validation results a PC
regression model with different number of PCs have been fitted for
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Fig. 4. The first F-EOFs (polynomial basis function with degree 1) of the REAM outputs for four stations, estimated over 6—25 June 2005. The location of the station is marked by ‘x’.
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Table 1

Simulation results: RMSEs averaged over 100 replications for linear, PC, and PFC
regression. The PC model was fitted with one PC and the PFC model was fitted with
one polynomial PFC.

Sample size Linear regression PC regression PFC regression
200 1.02 0.79 0.67
500 0.78 0.76 0.71
1000 0.74 0.73 0.71

each station. Fig. 5 shows a summary of the number stations (i.e.
regression models) versus the number of PCs needed to fit the
regression model. The plot shows that for most of the stations in the
study area using only one PC in the regression model seems to be
significant. We fit the PFC model using one PFC (PFCs were obtained
using a polynomial basis function of degree one). Table 2 shows the
RMSEs for some stations within the study region and the average
RMSE. The average RMSE indicate that overall, PFC regression
outperformed both PC and simple regression methods. The PFC
model has significantly improved the predictive ability relative to
the REAM model (the ozone prediction error has been reduced by
52% relative to the REAM model predictions). Using PFCs improved
ozone predictions by approximately 10% relative to the simple
regression model, but (on average) it showed a 3% improvement
relative to the PC model. Although RMSE values indicate that the
PFC model has better predictive ability than the other approaches,
they show that PFCs did not perform best in 36 stations compared
to the linear and PC regression, which approximately accounts for
38% of the stations in the study region (these stations are marked in
red ‘x’ in Fig. 1). In 18 out of these 36 stations the PC model seems to
outperform the other methods. Simple regression appears to
perform worst on average, which reinforces our view that regional
variations ought to be taken into account.

Fig. 6 displays ozone observations and the corresponding REAM
outputs, simple regression forecasts, PC regression forecasts, and
PFC regression forecasts over the period from 26 to 30 June for a
selected stations. The plots indicate that for the selected prediction
period, the PFC model produced forecasts that are very close to the
actual ozone concentrations at most times of the day.

The nature of our data suggests that there might be a great
possibility that the model errors could be correlated. One way of
verifying this, is to plot the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) of the model residuals. The
ACF and the PACF plots (not shown here) for the residuals of the
simple regression, PC regression, and PFC regression indicate that
the models errors seems to be autocorrelated. The models errors

Table 2

RMSEs: training period is 6—25 June, validation period is 26—30 June. The PC models
were fitted for: station 29 with 18 PCs, station 84 with 5 PCs, and station 107 with
20 PCs. The PFC models were fitted with 1 PFC (polynomial basis function with
degree one).

Regression model All stations ~ Station 29  Station 84  Station 107
REAM 18.98 15.10 26.95 27.40
Linear 10.01 11.57 13.33 10.08
PC 9.35 11.31 10.27 9.89
PFC 9.13 9.86 10.36 8.91
Linear with AR(2) errors 10.66 12.77 12.33 9.17
PC with AR(2) errors 9.61 11.17 10.27 9.53
PFC with AR(2) errors 9.39 10.14 10.36 8.76

are not white noise; hence they should be modelled as an autore-
gressive model (AR). Note that this structure in the error is actually
due to the different short-term behaviours in time of observations
and REAM outputs, and was already modelled in Guillas et al.
(2008). The ACF and PACF plots suggest that modelling the re-
siduals using a second order autoregressive model AR(2) seems to
be a sensible choice overall. We refitted the regression models
presented in this paper with an AR(2) model for the error. Table 2
shows the RMSEs averaged over the stations within the study re-
gion and for three randomly selected stations. We would expect
that the RMSE values to be smaller for the models with and AR
errors. However, the results show that modelling the errors with an
AR(2) models did not improve the models predictions in general.

To investigate the change in prediction errors when using a
longer fitting period, we repeated the analysis using the period
from 6 June to 10 July as a fitting period and used the proceeding
five days as validation period. Table 3 shows the RMSE values
averaged over all stations in the study region and for selected sta-
tions. The results indicate that the PFC model improved the pre-
dictive performance by 45% compared to the REAM model.
Moreover, using PFCs improved ozone predictions by 2% relative to
the simple regression model and by 4% compared to the PC model.
On average, the PC model seems to perform the worst in this case.
Although predictions errors seem to be smaller when using a
longer fitting period, the PFC model does not seem to have a sig-
nificant prediction improvement compared to the other down-
scaling methods. This coincides with the simulation results when
we used a relatively large sample size.

To further verify the consistency of our findings, we repeated
the analysis and model fitting for different fitting and validation
periods. We selected a fitting period of size n days and predict for
the next k days. Then, we move the n day fitting period one day

Number of Stations

o | E—

]

1 4 5 6

14 15 18 19 20

Number of Pcs

Fig. 5. The bar chart shows a summary of the number of stations versus the number of PCs needed to fit the regression model for the station. The number of PCs were determined

using the PRESS cross validation method by Mertens et al. (1995).
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Fig. 6. Prediction plots for station 107 (26—30 June). Observations (black line), REAM outputs (dashed red line), linear regression predictions (dashed pink line), PC predictions
(20 PCs, dotted blue line), and PFC predictions (polynomial basis function with degree one, dashed green line).

ahead and predict for the next k days and so on. The data are
available from 2 June 2005 to 31 August 2005. Within 2 June to 26
August, we select a fitting period of n = 20 consecutive days (i.e.
480 data points) and we allocate the following k = 5 days (i.e. 120
data points) to the validation period. Then we compute the RMSE
for each set of predictions. This computation is repeated 60 times,
as we move the fitting period by one day ahead and proceed with
the prediction for the corresponding validation period. Table 4
shows the RMSEs (averaged over the 60 runs) for stations 29, 80,
and 107. For station 29 the PC model were fitted with 18 PCs and for
stations 80 and 107 the PC model were fitted with 20 PCs. The PFC
models were fitted with 1 PFC, which was computed using a
polynomial basis function with degree one. The table also shows
the average RMSE over all stations and over all 60 runs. PFCs
outperform other methods in terms of predictive ability. However,
PFCs did not perform well for 38 stations, which is approximately
40% of the stations in the study region. These results coincides with
the results we obtained from Table 2. We conclude that overall,
PFCs show a significant improvement over PCs as our analysis rely
on the 60 chosen fitting and validation periods.

We now use the Jackknife to assess the intrinsic uncertainties in
the PC and PFC regression approaches (Efron and Tibshirani, 1994).
We remove one day (i.e. 24 data points) out of the fitting period (6—
25 June) and carry out the estimation and the prediction of the
validation period (26—30 June). This procedure is repeated
removing one day at a time over the fitting period. Moreover, we

Table 3

RMSEs: training period is 6 June to 10 July, validation period is 11—15 July. The PC
models were fitted for: station 29 with 18 PCs, station 84 with 5 PCs, and station 107
with 20 PCs. The PFC models were fitted with 1 PFC (polynomial basis function with
degree one).

Regression model All stations Station 29 Station 84 Station 107
REAM 15.84 11.46 17.61 18.07
Linear 8.87 9.66 7.18 8.06
PC 9.04 11.56 6.45 7.82
PFC 8.68 9.27 6.54 7.82

add each model predictor (PC or PFC score) progressively. We cap
the number of predictors in the models to a maximum of 10 (this is
to avoid over-fitting and for computational convenience). To
compute the PFCs we used a polynomial basis function with degree
10 as the number of PFCs in a model should not exceed the size of
the basis function. We then compute the RMSEs for each set of
predictions. Table 5 show the jackknife RMSEs (averaged over all 94
stations) for the PC and the PFC model. It shows that PFCs have
better predictive ability than PCs when considering one PC and one
PFC as predictors in the regression model. Furthermore, increasing
the number of predictors in the PC and PFC models does not
improve the predictive ability of the model. It seems that adding
more predictors adds more noise for both types of models. The
results indicates that having only one PFC in the regression does not
only shows better predictive performance, but also indicates that
PFCs outperforms PCs as a dimension reduction technique.

5. Discussion and conclusion

We used Fitted Empirical Orthogonal Functions (F-EOFs) to
downscale an air quality model for ozone over the southeastern U.S.
The results were compared to two downscaling approaches: simple
linear regression and Principal Components (PC) regression. The
analysis has been done for each site separately. The PFC regression
outperformed the other methods in terms of predictive ability in
most stations within the study region. However, the PFC method
did not work better in roughly one third of the stations. This might

Table 4

The RMSE value for some selected stations in the study region. We selected a fitting
period of 20 days (i.e. 480 data points) and we used the following 5 days (i.e. 120
data points) as a validation period. We chose 60 different fitting and validation
periods for each station. The RMSE values are averaged based on 60 runs.

Regression model All stations Station 29 Station 80 Station 107
Linear 9.33 9.50 8.79 10.31
PC 9.32 9.96 8.84 10.94
PFC 9.03 9.23 7.44 9.52




EA. Alkuwari et al. / Atmospheric Environment 81 (2013) 1-10 9

Table 5

Jackknife RMSE for the PC and PFC regressions. The values are averaged over all 94
stations of the study region. The training period was 6 June to 25 June and the
validation period was from 26 June to 30 June. The PFC model was computed based
on a polynomial basis with degree 10.

No. of predictors PC model PFC model
1 9.20 9.14
2 9.24 9.34
3 9.34 9.45
4 9.48 9.50
5 9.45 9.56
6 9.49 9.63
7 9.39 9.70
8 9.43 9.73
9 9.44 9.76
10 9.42 9.82

be because there are limited grid cells covering the locations of
those stations, which might be resolved by enlarging the domain of
the model, as some of stations in the study area are located at the
border of the grid cells domain. We considered the autocorrelated
nature of the data by fitting an AR(2) model for errors. The results
did not show any improvement in the models predictive ability.
This may be because the autoregressive structure of the errors is
not strong, hence the models without AR(2) errors might already
captures the essential features of the relationship between REAM
and the observations; the AR modelling step adds noise instead of
reducing uncertainties. We repeated the analysis for different
fitting and validation periods and the results coincide with the
illustrative period we initially chose. We examined the uncertainty
in the PC and the PFC models by applying the jackknife method, and
PFCs outperform PCs as a dimension reduction technique. These
results are consistent with the simulation results by Cook (2007).

One might argue that our method lacks the information that can
be obtained by using a spatially and temporally varying coefficientin
the regression model such as the downscaler used in Berrocal et al.
(2012). This type of weighted downscalers have the advantage of
borrowing strength for coefficients in neighbouring locations and
across space, while in our case we obtain a different coefficient for
each location (station) individually. Although our technique does
not borrow strength from neighbouring grid cell, we believe that our
method could be more adaptive to spatial properties that might exist
in the region, such as teleconnections and anisotropy.

Another important avenue to improve the forecasting ability of
the PFC model would be to consider additional factors that affect
ozone levels (e.g. temperature). One may think of the common
EOFs (Benestad, 2002) as a potential tool for that goal. Initial
investigation was done using Temperature as a predictor in the
downscaling process in addition to REAM. Although we would
expect the predictive ability of the model to improve, the results
showed that adding temperature as a predictor in the downscaling
process did not improve the models predictive performance. This
might be because REAM already seems to capture well the impact
of temperature on ozone. Finally, the uncertainties in the model
itself, due to numerical errors or unknown parametrizations of
chemistry and transport of ozone and its precursors, ought to also
trickle down to the location of interest through downscaling. This is
a challenging task that most probably requires a Bayesian frame-
work to reflect prior scientific knowledge.

PFCs are estimated using the sample covariance matrix. How-
ever, it has been shown that it is not a good estimator of the pop-
ulation covariance matrix, see Dempster (1969). One approach that
could be used to obtain a better estimate of the covariance matrix is
thresholding (Bickel and Levina, 2004). One of the main advantages
of thresholding is that it is computationally inexpensive. A useful
extension to our work would be to threshold the covariance matrix

used in the estimation of PFCs. It would be interesting to examine
the effect of thresholding on the predictive ability of the PFC
regression model. We are currently investigating the impact of
thresholding the covariance matrix on the forecasting performance
of the PC and PFC models. We have reasons to believe that it could
enhance the overall forecasting ability.
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