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Abstract Strong correlations of O3-CH2O, O3-CO and CO-CH2O were observed during the Deriving
Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality
(DISCOVER-AQ) aircraft experiment in July 2011 over the Washington-Baltimore area. The linear regression
slopes of observed O3-CH2O, O3-CO, and CO-CH2O do not vary significantly with time (11 a.m. to 4 p.m.) or
altitude in the boundary layer. These observed relationships are simulated well by a regional chemical
transport model. Using tagged-tracer simulations, we find that biogenic isoprene oxidation makes the largest
contribution to the regression slope of O3-CH2O across much of the eastern United States, providing a good
indicator for O3 enhanced by biogenic isoprene oxidation. In contrast, the regression slope of O3-CO is
controlled by both anthropogenic and biogenic emissions. Therefore, we use the CO-CH2O relationship to
separate biogenic from anthropogenic contributions to CO. By combining these regressions, we can track the
contributions to surface O3 by anthropogenic and biogenic factors and build a fast-response ozone estimator
using near-surface CH2O and CO concentrations as inputs. We examine the quality of O3 estimator by
increasing or decreasing anthropogenic emissions by up to 50%. The estimated O3 distribution is in
reasonably good agreement with the full-model simulations (R2 > 0.77 in the range of �30% to +50% of
anthropogenic emissions). The analysis provides the basis for using high-quality geostationary satellites with
UV, thermal infrared, or near-infrared instruments for observing CH2O and CO to improve surface O3

distribution monitoring. The estimation model can also be applied to derive observation-derived regional
metrics to evaluate and improve full-fledged 3-D air quality models.

1. Introduction

Ozone (O3) is a major pollutant in the troposphere (e.g., Lelieveld & Dentener, 2000; Logan et al., 1981;
Wang et al., 1998; Wang & Jacob, 1998). Thus, monitoring tropospheric O3 at regional and global scales
is important for environmental protection. Spaceborne remote sensing utilizing its absorption features in
the ultraviolet (UV) and the thermal infrared (TIR) bands is the most convenient way to provide O3 spatial
distributions around the globe. However, because of the molecular scattering of UV (X. Liu, Bhartia, et al.,
2010) and lack of contrast of TIR (Beer, 2006), the satellite observations for O3 still show a limited sensitivity
in the lowermost troposphere, especially near the surface, which is directly relevant to air quality (e.g.,
Cuesta et al., 2013).

Three-dimensional air quality models can provide information on the distribution of surface O3, but the accu-
racy of surface O3 simulations is limited by uncertainties in precursor emissions, atmospheric processes, and
nonlinear photochemistry. Some model uncertainties can be mitigated through probabilistic approaches
(e.g., Dabberdt et al., 2004; Delle Monache, Deng, et al., 2006; Delle Monache, Hacker, et al., 2006; Vautard
et al., 2009). Statistical methods have also been applied to estimate O3 distributions, including classification
and regression trees, linear regression, and neural networks (e.g., Biancofiore et al., 2015; Burrows et al., 1995;
Cobourn, 2007; Perez & Reyes, 2006; Shad et al., 2009; Van der Wal & Janssen, 2000). The advantage of such
statistical modeling is that it offers moderate to high accuracy at a moderate cost (Y. Zhang et al., 2012).
However, the nature of statistical modeling often requires a suite of input variables and does not enable
better understanding of chemical and physical processes (e.g., Guillas et al., 2008).
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An alternative to numerical or statistical modeling is to make use of the observations of O3 surrogates. The
correlations between O3 and other chemical species might be used effectively to diagnose O3 chemical
and physical processes (e.g., Chin et al., 1994; Koo et al., 2012; Parrish et al., 1993; Wang & Zeng, 2004).
Carbon monoxide (CO) is often observed and simulated to have a linear relationship with O3 in the lower
atmosphere (e.g., Buhr et al., 1996; Cardenas et al., 1998; Cheng et al., 2017; Chin et al., 1994; Cooper,
Moody, Parrish, Trainer, Holloway, et al., 2002; Cooper, Moody, Parrish, Trainer, Ryerson, et al., 2002;
Fishman & Seiler, 1983; Honrath et al., 2004; Huntrieser et al., 2005; Q. Li et al., 2002; Mao & Talbot, 2004;
Parrish et al., 1993, 1998). Over the eastern United States, the observed slope of O3 to CO at ~0.3 reflects con-
tributions by CO from primary anthropogenic emissions and that from biogenic isoprene oxidation (Cheng
et al., 2017) due in part to the production of both O3 and CO from biogenic volatile organic compound
(VOC) oxidation (Atkinson & Arey, 1998; Choi et al., 2010; Geng et al., 2011; Guenther et al., 1995; Hudman
et al., 2008; K.-Y. Lee et al., 2014; Pang et al., 2009; Pierce et al., 1998; Y. Zhang & Wang, 2016). It implies that
the observations of CO concentrations can be potentially applied to track the contributions to surface O3 by
anthropogenic and biogenic factors. In addition to Environmental Protection Agency surface monitoring net-
works, satellite observations of lower tropospheric CO are more promising than O3 over polluted regions
since CO concentrations are usually higher in the boundary layer than the free troposphere and unlike O3

it does not have high concentrations in the stratosphere, although both CO and O3 have substantial free tro-
pospheric columns relative to the boundary layer. CO can be detected by satellite TIR, near-infrared (NIR), and
joint TIR and NIR instruments, such as the NIR SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY; e.g., De Laat et al., 2012), the Measurement of Pollution in the Troposphere
(e.g., Emmons et al., 2004; Straume et al., 2005), and Atmospheric Infrared Sounder Aumann et al., 2003).

Formaldehyde (CH2O) is a principal intermediate species in the oxidation of atmospheric hydrocarbons (e.g.,
Duane et al., 2002; Fried et al., 2011; Pang et al., 2009; Wiedinmyer et al., 2001, and references therein). It is
also a major radical source leading to ozone production in the presence of nitrogen oxides (NOx; e.g.,
Z. Liu, Wang, Vrekoussis, et al., 2012). We will show that regional CH2O is also correlated to O3 in section 3.
Since the sources of CO and CH2O are often different, the two correlations can provide separate constraints
on O3 distributions. While regulatory monitoring of surface CH2O is unavailable, CH2O is detectable from
space with good sensitivities in the boundary layer by measuring backscattered solar UV between 325 and
360 nm (Chance et al., 2000), including SCIAMACHY (Wittrock et al., 2006), Ozone Monitoring Instrument
(González Abad et al., 2015; Kurosu et al., 2004), Global Ozone Monitoring Experiment-2 (GOME-2;
De Smedt et al., 2012), and Ozone Mapping Profiler Suite (González Abad et al., 2016; C. Li et al., 2015). The
total uncertainty of the HCHO vertical column data is typically in the range of 50–105% for each measure-
ment. Through averaging, the uncertainties for monthly means are down to 20–40% for GOME-2A and
SCIAMACHY (De Smedt et al., 2008), 38% for Ozone Monitoring Instrument, and 46% for GOME-2B (Zhu
et al., 2016). Therefore, the uncertainty of the monthly HCHO vertical column data from polar-orbiting instru-
ments are in the range of 20–50%.

In this study, we apply a 3-D chemical transport model to quantitatively study factors contributing to the
observed correlations and regression slopes of O3 with CH2O and CO and those of CO with CH2O using
the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations
Relevant to Air Quality (DISCOVER-AQ) measurements. The analysis will show that it is feasible to use
observed aircraft CO and CH2O concentrations to improve estimates of the surface O3 distribution over the
eastern United States. The uncertainties of current satellite-derived near-surface CO and CH2O are still too
large (e.g., Buchwitz et al., 2007; Gloudemans et al., 2005; L. Zhang, Jiang, et al., 2016) to be applied in this
method. The Environmental Protection Agency surface CO monitoring data are also unusable since CO
concentrations are often below the reporting limit (e.g., Zeng & Wang, 2011). We therefore use the model
simulated data, which reasonably captures the observed aircraft concentrations and relationships of O3,
CO, and CH2O during the DISCOVER-AQ campaign, to develop and evaluate a surface O3 estimation model
with surface CO and CH2O as input parameters. In the future, geostationary satellite instruments such as
Tropospheric Emissions: Monitoring of Pollution (TEMPO; Chance et al., 2013) and Geostationary Carbon
Observatory (Polonsky et al., 2014) will greatly improve the monitoring of near-surface measurements of
O3 precursors with sufficient accuracy and therefore make it possible to use observed CH2O and CO in the
O3 estimator we develop here. We describe the 3-D chemical transport model, DISCOVER-AQ data set,
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analysis methods, the O3 estimation model, and validation method in section 2. Section 3 describes the ana-
lysis, modeling, and evaluation results. Discussion of implementing the O3 estimator and conclusions are
given in sections 4 and 5, respectively.

2. Data and Analysis Methods
2.1. Observations and Simulations

The observation data used in this study were obtained from the NASA 2011 DISCOVER-AQ airborne campaign
(http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html). Sampling by the NASA P-3B aircraft
was conducted from Washington’s Beltway northeast to Baltimore and continuing on to the Delaware state
line and occasionally over the Chesapeake Bay. Fourteen flights over six locations selected for aircraft spirals
were carried out to measure the vertical structures of pollutants. Two hundred fifty-three daytime vertical
profiles from 300 m to 5 km were measured between 27 June and 31 July. CO was measured by a diode laser
spectrometer (Sachse et al., 1987). O3 was measured by the National Center for Atmospheric Research four-
channel chemiluminescence instrument (Weibring et al., 2010). The uncertainties of the measurements on
these two species are 2% and 5%, respectively. CH2O was measured by a difference frequency generation
absorption spectrometer (Weibring et al., 2010). For CH2O levels above 1 ppbv the total measurement uncer-
tainty at the 1σ level was estimate to be around 5%, which folds in systematic and limits of detection uncer-
tainties. To evaluate model simulations with the observations, we identify the model profiles corresponding
to the locations of aircraft spirals and the time of aircraft sampling. Corresponding model vertical profiles and
observations are used in correlation analysis to evaluate model performance.

We use a 3-D Regional chEmical trAnsport Model (REAM) to represent the observations and then conduct
further correlation analyses. The REAM model was applied in previous studies to analyze vertical mixing,
large-scale transport, emission estimates, and tropospheric chemistry over North America and East Asia
(e.g., Cheng et al., 2017; Choi et al., 2005; Choi, Wang, Yang, et al., 2008; Choi, Wang, Zeng, et al., 2008; Gu
et al., 2013, 2014, 2016; Jing et al., 2006; Z. Liu, Wang, et al., 2010; Z. Liu, Wang, Gu, et al., 2012; Z. Liu,
Wang, Vrekoussis, et al., 2012; Z. Liu et al., 2014; Wang et al., 2006, 2007; Yang et al., 2011; Zeng et al.,
2003, 2006; Zhao & Wang, 2009; Zhao, Wang, Choi, & Zeng, 2009; Zhao, Wang, & Zeng, 2009; Zhao et al.,
2010; Y. Zhang, Wang, et al., 2016; Y. Zhang & Wang, 2016; R. Zhang et al., 2017). The model domain covers
the contiguous United States with a horizontal resolution of 36 × 36 km2. The chemistry mechanism in REAM
is the GEOS-Chem standard chemical mechanism (V9-02; Bey et al., 2001) with updates of kinetics data
(http://jpldataeval.jpl.nasa.gov). The anthropogenic emission inventory used in the model is the 2011
National Emission Inventory (https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inven-
tory-nei-data). The biogenic isoprene emissions are the results of the Model of Emissions of Gases and
Aerosols from Nature version 2.1 (Guenther et al., 2012). Initial and boundary conditions for chemical tracers
are taken from the GEOS-Chem (V9-02) 2°× 2.5°simulation results (Bey et al., 2001). Meteorology fields are
from the Weather Research and Forecasting model, which assimilated products from the Climate Forecast
System Reanalysis (http://cfs.ncep.noaa.gov/cfsr).

The previous study by Cheng et al. (2017) shows that REAM simulates well the observed vertical and temporal
variations of O3, CO, NOx, isoprene, and CH2O, as well as the correlation between O3 and CO, and the O3-CO
regression slopes during the 2011 DISCOVER-AQ campaign. In this work, we therefore focus on analyzing the
correlation and regression slope of O3-CH2O. We trace separately via tagged tracers three different CH2O
sources, primary anthropogenic emissions and the oxidation of anthropogenic VOCs (CH2OanthroVOCs), the
oxidation of biogenic isoprene (CH2ObioISOP), and transport from model lateral and upper boundaries
(CH2OBC), to analyze the contribution from each source to the observed O3-CH2O relationship. Other biogenic
VOCs are not taken into account because isoprene provides the source for the vast majority biogenic CH2O
(e.g., Guenther et al., 2012; Kesselmeier & Staudt, 1999; Lathiere et al., 2006; Sindelarova et al., 2014). In
tagged-tracer simulations, relevant species and radicals, such as O3, NOx, and HOx (OH and HO2), are fixed
using results archived from the standard simulation. The sum of the three individual tagged tracers is within
2% of the total CH2O concentrations in the standard simulation for grid cells over the Washington-Baltimore
region. We carry out minor scaling adjustments in postprocessing, assuming that relative CH2O attributions
stay the same, to ensure that the sum of the CH2O tracers is the same as the total CH2O for each grid cell in
the standard simulation. We evaluate the scaling adjustments by calculating the relative error of the sum of
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the three tagged CH2O to the total simulated CH2O (Figure S1 in the supporting information). In the study
domain (mainly the southeast United States), the error is <0.5%. Since the magnitude of total CH2O is lower
in other areas, the error is lager but is still <1.5% for western United States and 3% for other rural regions.
With simulated CH2O attribution results, we can decompose the O3-CH2O regression slope into three sub-
slopes of the corresponding CH2O tracers (equation (1), derived in Appendix A),

Least squares regression slope of O3-CH2O

¼ Cov CH2OanthroVOCS;O3ð Þ
Var CH2Ototalð Þ þ Cov CH2OBC;O3ð Þ

Var CH2Ototalð Þ þ Cov CH2ObioISOP;O3ð Þ
Var CH2Ototalð Þ ;

(1)

where Cov and Var denote covariance and variance, respectively. Equation (1) shows that the contribution of
each CH2O tracer, that is, the subslope values, to the O3-CH2O regression slope is proportional to its covar-
iance with O3. It is therefore possible to have both positive and negative slope contributions.

For the DISCOVER-AQ region during the Baltimore-Washington study, where the majority of CH2O is bio-
genic, we can use the regression slope of O3-CH2O in the evaluation of model results using the observa-
tions. When extending the analysis using equation (1) to remote regions, the small variance of background
CH2O leads to abnormally large slopes, making it difficult to show the spatial distribution of the regression
slope. We therefore use an inversed slope of ΔCH2O/ΔO3 (equation (2), see the Appendix A) to illustrate the
spatial distribution over the United States since the variance of O3 is a more stable denominator that that
of CH2O,

Least squares regression slope of CH2O-O3

¼ Cov CH2OanthroVOCS;O3ð Þ
Var O3ð Þ þ Cov CH2OBC;O3ð Þ

Var O3ð Þ þ Cov CH2ObioISOP;O3ð Þ
Var O3ð Þ :

(2)

2.2. Surface Ozone Distribution Estimation

The total O3 concentration is contributed by three major sources: anthropogenic O3 production (O3anthro),
biogenic O3 production (O3bioISOP), and the transport from the lateral and upper model boundaries
(O3background; equation (3)). In the ozone estimation model, we estimate O3anthro and O3bioISOP using the
regressions of O3 with source-tagged CO and CH2O. We will show in the next section that the correlations
and regression slopes of O3-CH2O and CO-CH2O are almost entirely due to biogenic isoprene over the eastern
United States, where CH2O concentrations are mostly due to oxidation of biogenic isoprene. We make use of
this finding and use CH2O as a proxy for O3 related to biogenic emissions. We decompose surface O3 concen-
trations in equation (3) into three components related to regional anthropogenic emissions, biogenic
emissions, and background (not related to the emissions within the estimation domain). We approximate
the emission related components using CO (equation (4)). Recognizing that we would like to make use of
observation-based CO and CH2O concentrations, we replace CO from anthropogenic emissions (COanthro)
with CO-CObiogenic-CObackground, where CObiogenic is CO from biogenic isoprene oxidation that proceeds
through CH2O, and further compute CObiogenic as a function of CH2O from biogenic isoprene oxidation
(CH2ObioISOP; equation (5)). Considering that most of CH2O is biogenic over the region in the summer, we
replace CH2ObioISOP as CH2O-CH2Obackground (equation (6)).

O3½ � ¼ O3½ �anthro þ O3½ �bigenic þ O3½ �background (3)

≈
Δ O3½ �

Δ CO½ �anthro
� CO½ �anthro þ

Δ O3½ �
Δ CO½ �bioISOP

� CO½ �bioISOP þ O3½ �background (4)

¼ Δ O3½ �
Δ CO½ �anthro

� CO½ �total �
Δ CO½ �bioISOP

Δ CH2O½ �bioISOP
� CH2O½ �bioISOP � CO½ �background

� �

þ Δ O3½ �
Δ CO½ �bioISOP

� Δ CO½ �bioISOP
Δ CH2O½ �bioISOP

� CH2O½ �bioISOP þ O3½ �background (5)
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≈
Δ O3½ �

Δ CO½ �anthro
� CO½ �total � Δ CO½ �bioISOP

Δ CH2O½ �bioISOP
� CH2O½ �total � CH2O½ �background
� �

� CO½ �background
� �

þ Δ O3½ �
Δ CH2O½ �bioISOP

� CH2O½ �total � CH2O½ �background
� �

þ O3½ �background (6)

¼ A� CO½ �total þ B� CH2O½ �total þ C (7)

where A ¼ Δ O3½ �
Δ CO½ �anthro , B ¼ � Δ O3½ �

Δ CO½ �anthro � Δ CO½ �bioISOP
Δ CH2O½ �bioISOP þ

Δ O3½ �
Δ CH2O½ �bioISOP , C ¼ � Δ O3½ �

Δ CO½ �anthro � CO½ �background þ Δ O3½ �
Δ CO½ �anthro �

�
Δ CO½ �bioISOP

Δ CH2O½ �bioISOP �
Δ O3½ �

Δ CH2O½ �bioISOPÞ � CH2O½ �background þ O3½ �background:
We will show that this function works well for the eastern United States in the summer. The study domain
(to be shown in Figure 4) is selected where >90% of monthly mean surface CH2O is biogenic. Over the

domain of surface O3 estimation, we compute the Δ O3½ �
Δ CO½ �anthro ,

Δ O3½ �
Δ CO½ �bioISOP , and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP values using the least

squares regression slope formulations of O3-CO by Cheng et al. (2017) and O3-CH2O in equation (1). The
tagged-tracer simulations show that background values do not have a significant spatial dependence and
we use a value of 60 ppbv for CObackground and a value of 200 pptv for CH2Obackground. Regression of equa-
tion (6) yields a value of 10 ppbv for O3background. As we will discuss in section 4, the unique feature of this
surface O3 estimation is that it is based on the temporospatial stability of the predicting parameters of the
regression slopes and background values. To demonstrate the feasibility of this O3 estimator, for hourly esti-
mation from 11:00 a.m. to 4:00 p.m., we group the corresponding model data in all grid cells in the same
hour and compute the regional regression slope values. Therefore, the estimated O3 spatial variation is
due to those of CO and CH2O only. In order to test the reliability, the above estimation method is validated
through leave-one-out cross validation (LOOCV). The method uses a single sample from the original data sets
as the validation data, and the remaining samples (excluding the selected validation data point) are used in
the estimator. Each sample in the data sets is used once as validation data. We conduct the validation indi-
vidually for each hour of a day from 11:00 a.m. to 4:00 p.m. Of the 31 days from 1 to 31 July (d1, d2... d31), the
day i (di) is selected as the validation data, and the remaining days (d1, d2... d(i� 1), d(i + 1)... d31) are used to
compute the regression slopes and estimate the surface O3 distribution of day i. We exclude the data before
11:00 a.m. or after 4 p.m. when the estimation has large biases because photochemical production of O3,
CO, and CH2O is still slow and the correlations among the species are not photochemically driven.

3. Results
3.1. Correlations and Regression Slopes of O3-CH2O and CO-CH2O

We compare simulated O3-CH2O correlations to the DISCOVER-AQ observations as a function of altitude or as
a function of time in Figure 1. Simulated and observed correlation coefficient (R) values are in good agree-
ment. Strong correlation between O3 and CH2O is found from 300 m to the top of the boundary layer
(~2.5 km) with a narrow range of R values (~0.75). Near the surface, simulated R values show a slight decrease
due to the increase of the contribution of surface primary emissions of CH2O, which are not directly related to
photochemical O3 production. From the upper boundary layer to the free troposphere, R values show a dras-
tic drop and changes sign from positive to negative. The sign change reflects the rapid decrease of CH2Owith
altitude in the lower free troposphere where O3 increases with altitude (Figure S2 in the supporting informa-
tion). In the middle and upper boundary layers, the relative contribution by photochemical CH2O production
increases with altitude. Therefore, the concurrent photochemical production of O3 and CH2O is a major factor
contributing to the observed positive correlation between O3 and CH2O in the boundary layer. We also com-
pare the simulated and observed O3-CH2O correlation coefficient as a function of time of the day with data
from 300 m to 2.5 km (Figure 1b). These R values represent the spatial correlation in a given hour and are
somewhat lower than the spatial correlations in the vertical just discussed. The model is in good agreement
with the observations except the underestimation at 9 a.m. and overestimation at 5 p.m., which again is
related to the fact that photochemistry becomes less important here.

The observed regression slope of O3 to CH2O is also captured by model simulation with satisfactory agree-
ment in both vertical distribution and diurnal variation (Figures 1c and 1d). The O3-CH2O regression slope
at a given altitude is underestimated by the model at 0.3–2.5 km by ~15%. However, the observed slight
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increase (from ~5 to ~8 ppbv/ppbv) in the boundary is captured by the model. The observed O3-CH2O
regression slope at a given hour is better simulated than that at a given altitude. We further quantify
source contributions by decomposing the O3-CH2O regression slope into the different CH2O sources using
equation (1). During DISCOVER-AQ, the regression slope of O3-CH2O is contributed almost exclusively by
that of biogenic CH2O.

Over the United States, we use the model results in Figure 2 to understand the relative contributions of CH2O
sources to the CH2O-O3 regression slope near the surface (equation (2)). The slope decomposition results
show that the contribution from biogenic isoprene to the slope of O3 to CH2O is overwhelming over most
regions of the eastern United States. Over the regions where it dominates, biogenic CH2O has positive corre-
lations with O3 due to the concurrent production of these two species from the oxidation of biogenic VOCs.
The exception is in central United States, where biogenic CH2O concentrations are high but O3 concentra-
tions are low due to low NOx concentrations. The chemical loss of O3 leads to a negative regression slope,
which appears high because of the low variance of O3 in the region (equation (2)). Without significant photo-
chemical production, the variation of O3 in this region is low and is therefore relatively easier to estimate than
the other regions. Overall, the short lifetimes of biogenic isoprene and CH2O make it possible to use its con-
centrations to estimate the spatial variation of O3 using relationships like equation (7).

We also compare observed and simulated correlation and regression slopes of CO and CH2O using an equa-
tion similar to equation (1) for the Baltimore-Washington area. This information is also used in equation (7).
The simulation results are in good agreement with the observations as a function of altitude or time of a
day (Figure 3). Strong correlation between CO and CH2O (R = ~0.85) is observed and simulated from
300m to 2.5 km (Figure 3a). This correlation is most likely due to the coemissions from anthropogenic sources
and the coproduction of mostly biogenic CO and CH2O. In this altitude range, the regression slope of CO to
CH2O is about ~20 ppbv/ppbv without little variation between 9 a.m. and 5 p.m. (Figure 3c). Below 300 m,
simulated R value decreases toward the surface because the contribution of CO primary emissions increases
significantly near the surface while the secondary formation is still the major source of CH2O (Figure S3 in the
supporting information). These two processes are not correlated. Correspondingly, the slope of CO to CH2O
increases from 200 m to surface because the gradient of CO is larger than that of CH2O (Figure S2) due to the

Figure 1. Observed and simulated O3-CH2O correlation coefficients (R) and regression slope and subslopes (equation (1)) as a function of altitude (of data for 11 a.m.
to 4 p.m.; a, c) and as a function of local time (of data for altitude of 0.3–2.5 km; b, d). The subslopes due to varied CH2O sources are shown using areas filled with
different colors (equation (1)). The legends for different CH2O sources are the same as in equation (1). The horizontal bars in (c) and vertical bars in (d) show
the observed or simulated standard deviations of the regression slopes. The R, slope, and subslope values are computed using the DISCOVER-AQ (DAQ) observations
or corresponding model data at a given altitude bin or for a given period. DISCOVER-AQ = Deriving Information on Surface Conditions from Column and Vertically
Resolved Observations Relevant to Air Quality; REAM = Regional chEmical trAnsport Model.
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Figure 2. Distribution of the regression slopes and subslopes of surface CH2O-O3 (equation (2)) over the United States. The
title All stands for the slope computed by total O3 and total CH2O concentration; the titles of Bio ISOP, Anthro VOCs, and BC
stand for the subslopes computed by total O3 and CH2O from primary anthropogenic emissions and oxidation of
anthropogenic VOCs, oxidation of biogenic isoprene, and transport from the lateral and upper model boundaries,
respectively. The slope and subslope values on each grid are computed using selected hourly data on daytime of
11: 00 a.m. to 04: 00 p.m. from 1 to 30 July. VOCs = volatile organic compounds.

Figure 3. Observed and simulated CO-CH2O correlation coefficients (R) and regression slope for the Baltimore-Washington area as a function of altitude for
daytime of 11:00 a.m. to 04:00 p.m. (a, c) and local time for altitude of 0.3–2.5 km (b, d). The horizontal bars in (c) and vertical bars in (d) show the observed
standard deviations of the regression slopes. Shaded blue areas in (c) and (d) show simulated standard deviations of the regression slopes. The R and slope values are
computed using the DISCOVER-AQ (DAQ) observations or corresponding model data at a given altitude bin or for a given time period. DISCOVER-AQ = Deriving
Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality; REAM = Regional chEmical trAnsport Model..
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surface primary emissions. However, we also test the correlation of surface CObiogenic and CH2O, which shows
an R value in a range of 0.85 to 0.95 in the areas where more than 90% monthly mean CH2O is from biogenic
isoprene oxidation. It implies that CH2O and the correlation of CO-CH2O can be used to separate
anthropogenic and biogenic CO. Above 2.5 km, the R value decreases from the boundary layer top to the
free troposphere. This is because above the boundary layer CO is mainly from transport from lateral
and upper boundaries, which does not contribute to CH2O as much due to its short chemical lifetime
(Figure S3). The slope of CO to CH2O also increases from the boundary layer to the free troposphere due
to low concentrations of CH2O in free troposphere. As a function of time, the R value does not show a
significant variation. The regression slope of CO-CH2O remains at ~20 ppbv/ppbv in daytime except higher
values in the morning (before 8: 00 a.m.) when photochemistry is weak.

3.2. Surface Ozone Estimation Using Equation (7)

For July 2011, we estimate the LOOCV surface O3 distribution using equation (7). The averaged parameters of
equation (7) for the 30 validations are listed in Table S2 in the supporting information. To examine the sensi-
tivity of the estimation to emissions, we also increase (or decrease) anthropogenic emissions by 15%, 30%,
and 50%, respectively. The full REAM model is run with different emissions. For the LOOCV estimation

Figure 4. Distributions of monthly mean (11:00 a.m. to 4:00 p.m.) REAM and LOOCV estimation of surface O3 concentrations for July 2011 under different anthro-
pogenic emission scenarios. In LOOVC hourly estimation, the regional parameters in equation (7) are estimated using data not including the day of estimation.
Scatterplots of corresponding grid-cell hourly REAM and LOOCV estimation data are shown in the third row; the 1:1 line is shown in red. Seven emission scenarios
are presented. +50%, +30%, +15%, Standard, �15%, �30%, and �50% on the top of columns denote 150%, 130%, 115%, original, 85%, 70%, and 50% of anthro-
pogenic CO and NOx emissions of the 2011 National Emission Inventory. The comparison statistics are listed in Table 1. REAM = Regional chEmical trAnsport Model;
LOOCV = leave-one-out cross validation
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using equation (7), the Δ O3½ �
Δ CO½ �anthro,

Δ O3½ �
Δ CO½ �bioISOP, and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP values are the same as in the standard simulation.

The only changes are for the CO and CH2O surface concentrations used. The premise is that the regression

slopes of Δ O3½ �
Δ CO½ �anthro ,

Δ O3½ �
Δ CO½ �bioISOP , and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP are relatively stable with respect to emission changes and

therefore the estimation model using equation (7) provides a robust means to estimate surface O3

distribution when the distributions of CO and CH2O are known.

Since equations (4)–(7) are more accurate when CH2O is dominated by oxidation of biogenic isoprene, the
estimation evaluation is only for the eastern U.S. regions where monthly mean biogenic CH2O is >90%.
We compare the averaged estimation results with REAM results for these regions under different emission
scenarios in Figure 4. In the standard simulation, the estimation shows a similar distribution and explains
86% of the variance of the full REAM results (R2 = 0.86) with no significant overall bias (Table 1), although
the scatterplot shows a slight tendency of low biases for O3 above 60 ppbv with an average of �1.7 ppbv.
As the anthropogenic emissions decrease by 15–50%, the REAM model shows a decrease from 3.0 to
12.4 ppbv on average in these regions. The estimation model using equation (7) overestimates the O3

decrease by 1.0–1.5 ppbv on average and the explained variance decreases from 81% to 65%. When
anthropogenic emissions increase by 15%–50%, the full REAM results show surface O3 increases from 2.7
to 11.8 ppbv. As anthropogenic emissions increase, the O3 hot spots due to urban emissions become more
obvious. The estimation model using equation (7) shows similar features but overestimates the O3 increase
by 0.7–1.1 ppbv on average. However, the explained variance (R2 value) increases from 0.87 to 0.90 due lar-
gely to good estimations of urban increases. We also tested the estimation model performance by increasing
(or decreasing) biogenic isoprene emissions by 15%, 30%, and 50%, respectively. The full REAMmodel shows
much lower dependence of surface O3 to biogenic emissions than anthropogenic emissions (Figure S4 in the
supporting information). The estimation model shows similar results with R2 values ranging from 0.77 to 0.86
(Table S1 in the supporting information).

4. Discussion

The surface O3 estimator (equation (7)) works very well for the regions shown in Figure 4, and, it is also
quite robust with R2 values >0.77 for anthropogenic emissions in the range of �30% to +50% and bio-
genic emissions of �50% to +50%. Therefore, it has the potential of being used for rapid O3 distribution
assessment if the distributions of surface CO and CH2O are known. Given the current lack of usable sur-
face CO and CH2O observations, we cannot test the estimator using observed data. In this analysis, the

key parameters of the estimator, that is, the regression slopes of Δ O3½ �
Δ CO½ �anthro ;

Δ O3½ �
Δ CO½ �bioISOP ; and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP

are based on model simulations, although we show that model simulations are in good agreement with
DISCOVER-AQ observations (Figures 1 and 3; Cheng et al., 2017). If the distributions of O3, CO, and CH2O
are known, equation (6) can be used to obtain the observation-based regression slopes using least
squares regression. These parameters can provide insights in understanding of biases of air quality model
simulations and be applied to improve the model.

Table 1
Comparison of Hourly REAM and LOOCV Estimation of Surface O3 Concentrations Under Different Anthropogenic
Emissions Scenarios

Emission
scenarios

REAM mean
±Std (ppbv)

Estimation mean
±Std (ppbv)

Mean
Bias MSE R2

Least squares
slope (ppbv/ppbv)

+50% 63.0 ± 8.2 64.1 ± 8.1 1.1 7.6 0.90 1.06
+30% 59.0 ± 7.8 59.9 ± 7.6 0.9 7.1 0.89 1.04
+15% 53.9 ± 7.5 54.6 ±7.5 0.7 8.5 0.87 1.02
Standard 51.4 ±7.0 51.8 ± 6.9 0.4 7.8 0.86 0.99
�15% 48.2 ± 6.8 47.2 ±6.8 �1.0 9.5 0.81 0.97
�30% 44.3 ± 6.6 43.2 ± 6.3 �1.1 11.0 0.77 0.95
�50% 38.8 ± 6.2 37.3 ± 5.5 �1.5 13.6 0.65 0.91

Note. All grids in the domain in all certain hours (11:00 a.m. to 4:00 p.m.) are grouped together. REAM = Regional
chEmical trAnsport Model; LOOCV = leave-one-out cross validation; Std = standard deviation; MSE =mean squared error.
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Surface COmeasurements are readily obtained if existing instruments are calibrated and the reporting limit is
lowered. In situ observation of CH2O is more complex and expensive than CO. For both species, the high con-
centrations in the boundary layer and very low concentrations in the stratosphere imply that satellite instru-
ments have better sensitivity to derive their near-surface concentrations than O3. The relatively large
uncertainties of the current generation instruments on Sun-synchronous satellites can be greatly reduced
(due in part to the large increase of observation frequency) by instruments on board geostationary satellites
such as TEMPO over North America (Chance et al., 2013), SENTINEL-4 over Europe (Ingmann et al., 2012), and
GEMS over East Asia (Bak et al., 2013). High-quality CH2O measurements over the United States will be avail-
able from TEMPO. Deployment of near-IR and thermal instruments on geostationary satellites will be needed
for improved satellite measurements of near-surface CO. More complex statistical methods can be applied to
combine such derived O3 estimation with in situ surface O3 observations (Y. Zhang et al., 2018).

The estimator is valid only in the regions where CH2O is dominated by oxidation of biogenic isoprene during
the period of the year when isoprene emissions are large. As anthropogenic emissions are expected to con-
tinue decreasing (Cheng et al., 2017), the regions where biogenic CH2O dominates and the estimator can be
applied will increase. There are limitations in the estimator of equation (7). The relatively good performance
of the estimation model with changing anthropogenic emissions is not because surface O3 is insensitive to
anthropogenic NOx emissions. In fact, most of the changes shown in Table 1 are due to NOx. However, surface
NOx is not as useful a predictor as CO and CH2O in the formulation of equation (7). O3 is a secondary pollutant
while, NOx is mostly a primary pollutant in our study region. In comparison, biogenic CO and CH2O are sec-
ondary. As NOx is oxidized and its concentration decreases, O3, biogenic CO, and CH2O are produced and
their concentrations increase. The anthropogenic CO is a better tracer for the cumulative effect of O3 produc-
tion by anthropogenic NOx because of its much longer lifetime than NOx and fast-reacting VOCs (e.g., Chin
et al., 1994).

In REAM simulations, we make an implicit assumption that NOx and CO emission ratios of anthropogenic
sources do not change. This assumption is not always valid; for example, NOx emission reduction from the
electric generating utility sources in the past two decades did not reduce CO emissions significantly
(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data). When the emission
changes of anthropogenic NOx and CO are sufficiently different, the estimator needs to be reconstructed

with updated regression slopes of Δ O3½ �
Δ CO½ �anthro,

Δ O3½ �
Δ CO½ �bioISOP, and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP . Furthermore, if a region is affected by

pollutant sources such as fires that are not included in the model, the estimation results will be biased.
Another uncertainty of this estimator could come from isoprene chemistry. If a specific isoprene oxidation

pathway significantly affects the regression slopes of Δ O3½ �
Δ CO½ �anthro,

Δ O3½ �
Δ CO½ �bioISOP, and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP, equation (6) can be

applied to derive these parameters on the basis of the observations, which can then be applied to evalu-
ate the chemical pathway representation in the model.

5. Conclusions

Extensivemeasurement of O3, CO, and CH2Owere conducted during the DISCOVER-AQ aircraft experiment in
July 2011 over the Washington-Baltimore area. We find strong correlation and stable linear regression slopes
of O3-CH2O, O3-CO, and CO-CH2O with no significant variation with time (11 a.m. to 4 p.m.) or altitude in the
boundary layer. The concentrations, correlations, and regression slopes of these tracers are reproduced well
by the REAM model. We find that biogenic isoprene oxidation makes most of the contribution to the
regression slopes of CH2O-O3 in large regions of the eastern United States using the slope decomposition
method by tracing separately three different CH2O sources, including primary anthropogenic emissions
and oxidation of anthropogenic VOCs, oxidation of biogenic isoprene, and transport from the lateral and
upper model boundaries.

Making use of the robust regression slopes, we construct a surface ozone estimation model using the distri-
butions of CH2O and CO as input parameters. In this model, CH2O is used as a proxy to calculate O3 and CO
produced by the oxidation of biogenic VOCs. The estimator can explain >77% of the surface O3 variance
simulated by the full 3-D model in the range of 70% to 150% of the anthropogenic emissions. It provides a
fast regional surface O3 estimation in most regions of the eastern United States in summer where CH2O is
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dominated by oxidation of biogenic isoprene. With high-quality geostationary satellite observations of CO
and CH2O, the estimator could be applied to improve surface O3 distribution, which is challenging to mea-
sure directly from space. The function of equation (6) relates surface concentrations of O3 to those of CO
and CH2O. Using a sizable observation data set of these concentrations of a given region, regional metrics,

such as the regression slopes of Δ O3½ �
Δ CO½ �anthro,

Δ O3½ �
Δ CO½ �bioISOP, and

Δ CO½ �bioISOP
Δ CH2O½ �bioISOP, can be empirically determined and applied

to investigate model performance and biases. Therefore, the estimation model provides the means of using
observations to evaluate and improve full-fledged 3-D air quality models.

Appendix A

CH2O concentration is the sum of that from primary anthropogenic emissions and the oxidation of anthro-
pogenic VOCs (CH2OanthroVOCs), the oxidation of biogenic isoprene (CH2ObioISOP), and transport from model
lateral and upper boundaries (CH2OBC):

CH2O½ �total ¼ CH2O½ �anthroVOCs þ CH2O½ �BC þ CH2O½ �bioISOP: (A1)

The slope of O3 to CH2O in a least squares regression is thus

Least squares regression slope of O3-CH2O

¼ Cov CH2Ototals; O3ð Þ
Var CH2Ototalð Þ

(A2)

¼
CH2O½ �total � CH2O½ �total

� �
O3½ � � O3½ �

� �
Var CH2Ototalð Þ (A3)

¼
CH2O½ �anthroVOCs þ CH2O½ �BC þ CH2O½ �bioISOP � CH2O½ �anthroVOCs þ CH2O½ �BC þ CH2O½ �bioISOP

� �� �
O3½ � � O3½ �

� �
Var CH2Ototalð Þ

(A4)

¼

CH2O½ �anthroVOCs � CH2O½ �anthroVOCs
� �

O3½ � � O3½ �
� �

þ CH2O½ �BC � CH2O½ �BC
� �

O3½ � � O3½ �
� �

þ CH2O½ �bioISOP � CH2O½ �bioISOP
� �

O3½ � � O3½ �
� �

Var CH2Ototalð Þ (A5)

¼ Cov CH2OanthroVOCs;O3ð Þ
Var CH2Ototalð Þ þ Cov CH2OBC;O3ð Þ

Var CH2Ototalð Þ þ Cov CH2ObioISOP;O3ð Þ
Var CH2Ototalð Þ ; (A6)

where X donates the average value of X.
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