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North China, especially the Beijing–Tianjin–Hebei (BTH) 
region, frequently experiences severe particulate pollu-
tion days (SPPDs, days when the daily mean concentra-

tion of particulate matter <2.5 μm (PM2.5) exceeds 150 μg m−3) in 
boreal winter (December, January and February (DJF))1,2, which 
have essential impacts on visibility3, ecosystems4, human health5,6 
and climate7. During January 2013, the observed PM2.5 concentra-
tions reached as high as 680 μg m−3 in Beijing8. Although stringent 
clean-air regulations have since been implemented in China, and the 
annual mean PM2.5 concentration in China decreased by approxi-
mately 33% over 2013–20179, unexpected SPPDs still occurred in 
Beijing during the COVID-19 lockdown period (January–February 
2020)10,11. Therefore, understanding the mechanisms respon-
sible for the occurrence of SPPDs is important for air-quality  
management planning.

While their underlying cause is attributed to high anthropo-
genic emissions associated with rapid economic development, 
SPPDs generally occur under conducive weather patterns (CWPs) 
favourable to the formation and accumulation of pollutants12. The 
atmospheric circulation pattern over North China during haze 
days was characterized by weakened northerlies and the devel-
opment of a temperature inversion in the lower troposphere13, a 
weakened East Asian Trough in the mid-troposphere and a north-
ward shift of the East Asian jet in the upper troposphere14. Similar 
anomalous atmospheric circulation patterns were also reported in 
other studies1,15,16. These features of CWPs were obtained from the 

composite analysis of haze days, or SPPDs. Nevertheless, CWPs 
should be further classified to quantify the occurrence frequency 
of each CWP and to understand how climate drivers help shape  
different CWPs.

Previous studies suggested that various climate factors are cor-
related with variations in haze pollution throughout China on 
interannual to decadal timescales17. For example, the weakening 
of the East Asian winter monsoon increased the average concen-
trations of PM2.5 in North China18,19. The reduced autumn Arctic 
sea-ice cover was reported to result in a more stable atmosphere and 
hence more haze days in the following winter in eastern China20. Sea 
surface temperature anomalies (SSTAs) in the Pacific Ocean15,21–23, 
Atlantic Ocean21 and Indian Ocean24 were found to be linked with 
variations in haze days. Furthermore, teleconnections, such as the 
East Atlantic–West Russia (EA/WR) pattern25 and the Eurasian 
pattern26, cause the formation of SPPDs by inducing anomalous 
circulation conditions. CWPs are also projected to increase under 
future scenarios of climate warming1,27–29. However, previous stud-
ies usually focused on a single climate factor. As such, the cli-
mate factors that are predominantly responsible for most SPPDs  
remain unclear.

Here we show that the EA/WR teleconnection pattern is the 
dominant climate driver for SPPDs in BTH. We employed PM2.5 
observations in BTH during DJF of 2013–2019 from the observa-
tional network of the Chinese Ministry of Ecology and Environment 
(Fig. 1a) and identified the CWPs for SPPDs by using a weather 
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pattern classification approach. We then assigned historical daily 
DJF circulation patterns during 1979–2019 into CWPs to obtain 
reconstructed CWPs (R-CWPs). The most dominant climate fac-
tor was determined by the highest frequency of R-CWPs caused by 
that factor.

typical CWPs for sPPDs and reconstructed historical CWPs
To identify CWPs, we selected the key meteorological variables 
that drive daily variations in PM2.5. Correlations of PM2.5 with 
various meteorological variables, including geopotential height, 
temperature, winds, relative humidity and sea-level pressure, were  
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Fig. 1 | Conducive weather patterns favourable for formation of sPPDs. a, Time series of the daily average PM2.5 over BTH during DJF in 2013–2019 (black 
line). The red dashed line is the 150 μg m–3 threshold used to define SPPDs. The highlighted pink rectangles represent the occurrences of T5 + T7 weather 
patterns for the identified CWPs. b, Mean anomalies of PM2.5 relative to the mean of 2013–2019 for each weather type; the error bars are computed on 
the basis of a normal distribution 95% confidence interval. T5 and T7 are identified as CWPs because of their high positive anomalies. c–h, Composited 
anomalous weather patterns of U200 (c,d), Z500 (e,f) and V850 (g,h) for T5 (c,e,g) and T7 (d,f,h) over the years 2013–2019. The percentages in c and 
d are the frequencies of occurrence for T5 (c) and T7 (d) during DJF in 2013–2019. The grey contours in c and d are the western jet streams calculated by 
DJF means of U200 from 1979 to 2018. T5 displays a northeastward shift of jet stream (c) and a weak and shallow East Asian trough (e). T7 is associated 
with a weakened and southward shift of jet stream (d), accompanied by a weakened East Asian trough (f). Both T5 (g) and T7 (h) show that positive 
meridional wind anomalies over BTH reduce the prevailing northwesterly winds to bring less cold and dry air to BTH during winter.
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examined during DJF of 2013–2019. High correlations were found 
with the zonal flow of the upper troposphere at 200 hPa (U200), the 
geopotential heights at 500 hPa (Z500) and 850 hPa, the meridional 
flow at 850 hPa (V850), the vertical difference in the temperature 
anomalies between 850 hPa and 250 hPa, and the relative humidity 
at 1,000 hPa (Extended Data Fig. 1). Among these variables, U200, 
Z500 and V850 were ultimately selected considering that climate 
factors influence CWPs by changing large-scale circulations. These 
three parameters have also been reported to be important for the 
formation of SPPDs1,14,28. Assuming that the daily concentration of 
PM2.5 averaged over BTH (x) is related to the daily meteorologi-
cal variable (y) at a grid cell following y = ax + b (where y is one of 
U200, Z500 and V850), maps of the regression coefficient (a) were 
utilized to quantify the meteorological changes in response to PM2.5 
fluctuations (Extended Data Fig. 2). Then, guided by the highest 
positive and negative regression coefficients, the meteorological 

parameters in the black rectangles in Extended Data Fig. 2a–c were 
used to classify the CWPs.

By using U200, Z500 and V850 as identified, we classified the 
daily weather conditions during DJF of 2013–2019 (632 days) into 
7 types (Methods, hereafter referred to as T1 through T7, shown 
in Extended Data Fig. 3). T1 through T7 accounted for 15.2%, 
13.0%, 20.1%, 11.6%, 22.6%, 7.1% and 10.4% of the weather con-
ditions among all 632 days. Considering the mean PM2.5 concen-
tration, the mean PM2.5 anomalies, the number of observed SPPDs 
and the percentage of SPPDs among that type of wintertime days, 
the T5 (150.1 μg m−3, +35.2 μg m−3, 57 days and 43.5%) and T7 
(154.2 μg m−3, +39.3 μg m−3, 29 days and 45.3%) were CWPs that 
induced the most occurrences of SPPDs, while the T1 (109.5 μg m−3, 
−5.3 μg m−3, 24 days and 26.7%), T2 (105.9 μg m−3, −9.0 μg m−3, 
16 days and 22.2%) and T6 (116.9 μg m−3, +2.0 μg m−3, 10 days 
and 22.7%) patterns resulted in moderate pollution and the T3 
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Fig. 2 | time series of conducive weather patterns and reconstructed conducive weather patterns. a–c, The green lines and orange lines with triangle 
markers are, respectively, reconstructed (1979–2019) and classified (2013–2019) occurrence frequencies in winter for T5 (a), T7 (b) and T5 + T7 (c). 
Obs_SPPDs_BJ (c) is the observed time series of calculated SPPDs obtained from the US Embassy in Beijing over 2009–2020. ‘Trend’ represents the 
linear trend calculated by simple linear regression, and P indicates its significance by t test. R-CWPs in 2013–2019 are consistent with classified CWPs. 
The frequency of T5 + T7 R-CWPs in 2009–2019 can well capture the interannual variations of observed SPPDs in Beijing. The long-term time series of 
R-CWPs by using multiple reanalysis datasets (see Extended Data Fig. 5) are well matched with each other for the period of 1979–2019. These evaluations 
indicate the R-CWPs can be used to investigate underlying climate factors inducing SPPDs.
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(86.0 μg m−3, −28.9 μg m−3, 14 days and 11.4%) and T4 (79.6 μg m−3, 
−35.3 μg m−3, 7 days and 9.7%) patterns corresponded to relatively 
clean patterns (Fig. 1b and Extended Data Fig. 4). During 2013–
2019, there were 157 wintertime SPPDs, of which 86 days (54.8%) 
occurred under T5 and T7 weather patterns (Fig. 1a). Note that 
anthropogenic emissions constituted another important factor for 
the occurrence of SPPDs. For example, SPPDs did not occur follow-
ing the Chinese Spring Festival due to relatively low emission levels 
even though the weather patterns were CWPs.

Multidecadal data are needed to detect the dominant climate fac-
tor leading to CWPs since climate represents the long-term aver-
age of weather. On the basis of the CWPs (T5 and T7) found in 
the preceding (Fig. 1c–h), the long-term changes in CWPs were 
reconstructed by assigning the historical daily DJF weather con-
ditions during 1979–2019 into T5 and T7 by using the smallest 
Euclidean distance (Methods). The frequencies of the R-CWPs 
over 1979–2019 show no significant trends but large interannual 
variations for T5, T7 and T5 + T7 (Fig. 2), which are associated 
with the variations in climate factors as discussed subsequently. We 
evaluated the R-CWPs in several ways. For 2013–2019, the R-CWPs 
agree with the CWPs classified using U200, Z500 and V850  
(Fig. 2), with correlation coefficients of 0.97, 0.96 and 0.96 for T5, 
T7 and T5 + T7, respectively. The long-term record of observed 
PM2.5 from the US Embassy in Beijing over 2009–2019 demonstrates  
that the interannual variation of observed SPPDs matches that 
of the T5 + T7 R-CWPs. The low frequencies of observed SPPDs  
at the US Embassy in Beijing over 2017–2019 indicate the result of 
the Clean Air Action. The variations in CWPs reconstructed using 
the National Center for Environmental Prediction (NCEP) reanal-
ysis over 1979–2019 resemble those of R-CWPs reconstructed 
by the fifth-generation reanalysis from the European Centre for 
Medium-Range Weather Forecasts (ERA5), with high correlation 

coefficients of 0.93–0.99 (Extended Data Fig. 5). Moreover, the 
pattern correlations between composite anomalies of the R-CWPs 
during 1979–2019 and those of CWPs during 2013–2019 are in 
the range of 0.88 to 0.99 (Extended Data Fig. 6). Considering these 
evaluations, we leveraged the T5 and T7 R-CWPs in 1979–2019 to 
identify the dominant climate factors that cause SPPDs.

Dominant climate drivers of sPPDs
We first performed correlation analyses to explore the poten-
tial linkage between climate factors and R-CWPs. Extended Data  
Figs. 7–9 show heat maps of the correlation coefficients between T5/
T7 and 85 atmospheric indices (Supplementary Table 1) and 26 SST 
indices (Supplementary Table 2), respectively. We found that T5 is 
highly correlated with atmospheric teleconnection indices, such as 
the East Atlantic pattern, the EA/WR pattern and the Asian Zonal 
Circulation Index (Extended Data Fig. 7). By contrast, T7 is cor-
related mainly with the SST of the Pacific Ocean, for example, the 
Oyashio Current SST Index, the Kuroshio Current SST Index, the 
West Wind Drift Current SST Index and the NINO A SSTA Index 
(Extended Data Fig. 9). Hence, the dominant climate factors linked 
to SPPDs in BTH are examined on the basis of these two aspects. 
Other climate factors, including the Arctic sea ice, atmospheric 
teleconnections and SST over the Indian and Atlantic oceans, are 
excluded as described in detail in Supplementary Text 1.

Boreal winter teleconnections, such as the Pacific/North 
American pattern, the West Pacific pattern and the East Atlantic 
pattern, can be detected from the geopotential height field at 
500 hPa30,31. Hence, we used the annual DJF mean 500 hPa geopo-
tential height to regress the T5 R-CWP over the Eurasian continent 
from 1979 to 2019 (for each grid in the studied domain, the regres-
sion coefficient is calculated by a simple linear regression, y = ax + b, 
where T5 is x and the DJF mean 500 hPa geopotential height is y; 
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thus, the regression coefficient, a, indicates the Z500 anomaly in 
response to changes in T5). Figure 3a shows the spatial distribution 
of the regression coefficient, revealing a planetary-scale stationary 
wave pattern extending to the North Atlantic Ocean at approxi-
mately 45° N, western Europe, central Russia and mid-latitude East 
Asia with alternating positive/negative anomalies. This pattern 
is similar to the EA/WR pattern, whose impact extends from the 
North Atlantic to the whole Eurasian mainland32,33. On the basis of 
these findings, we examined the leading modes of large-scale tele-
connections from the DJF mean 500 hPa geopotential height field. 
The spatial distribution of the second rotated empirical orthogonal 
function (REOF2) mode eigenvector (Fig. 3b), which represents the 
EA/WR pattern, displays nearly the same structure as the regression 
map of the 500 hPa geopotential height on T5. A close correlation is 
found between T5 and the time series of the corresponding second 
principal component (PC2, Fig. 3c), with a statistically significant 
correlation coefficient of 0.76.

The EA/WR pattern is essentially tied to large-scale stationary 
waves, which are forced by vorticity transients in the mid-latitude 
Atlantic or by a diabatic heat source over the subtropical Atlantic 
near the Caribbean Sea33. Horizontal wave activity fluxes (Methods) 
at 200 hPa associated with the EA/WR pattern show that a source of 
the wave train is located over the mid-latitude Atlantic at approxi-
mately 40° N; the wave train propagates eastwards and branches at 
15° W (Fig. 3e), whereupon one branch extends to East Asia via 
western Europe and western Russia, while the other branch propa-
gates southeastwards to the Middle East via West Africa (Fig. 3e). 
Note that the horizontal wave activity fluxes associated with T5 
display a clear wave-train pattern extending from the mid-latitude 
North Atlantic to East Asia through western Europe and western 
Russia, which closely matches the North Atlantic–Eurasian route 
of Rossby wave propagation associated with the EA/WR pattern  
(Fig. 3d). As for T5 (Fig. 1c,e,g), the northeastward-shifted jet 

stream acts as a wave guide for Rossby waves, motivating a weak and 
shallow East Asian Trough to obstruct the southward outbreak of 
cold air. This suggests that the EA/WR pattern is responsible for T5 
CWPs over BTH. Considering that T5 is the most frequent weather 
pattern (accounting for 22.6% of wintertime days in 2013–2019, 
21.6% of wintertime days in 1979–2019 and 36.3% of the observed 
SPPDs in 2013–2019), the EA/WR pattern is identified as the domi-
nant climate factor that leads to SPPDs in BTH.

The reconstructed time series of T7 display a statistically sig-
nificant relationship with the SSTAs in the North Pacific Ocean. 
As shown in Fig. 4a, the linear coefficients of SST regressed on the 
T7 R-CWPs time series exhibit a northeast–southwest-oriented 
dipole pattern in the North Pacific polewards of 20° N; this pattern 
is characterized by a band of positive anomalies extending from the 
western coast of North America across the Pacific to the western 
Bering Sea and a band of negative anomalies extending from the 
coast of Asia to the central North Pacific. Weak positive correla-
tions were also found in the tropical central North Pacific (Fig. 4a). 
When these features are considered together, the regression map 
seems to display a Victoria mode (VM) SSTA34. Figure 4b shows the 
VM, which is defined as the EOF2 of the SSTAs in the North Pacific 
polewards of 20° N34,35. The spatial distribution of the VM resembles 
the SSTA pattern associated with T7, and the correlation coefficient 
between the two time series is 0.65 (Fig. 4c).

Previous studies indicated that the VM pattern imparted from 
the North Pacific Oscillation can induce overlaying atmospheric 
anomalies, leading to an anomalous wintertime zonal wind stress 
over the North Pacific34,36. Figure 4e shows the wave activity flux 
and stream function regressed on the normalized VM index at 
200 hPa, illustrating that a Rossby wave train originates from the 
western North Pacific probably induced by heat flux anomalies 
associated with western-boundary currents and propagates north-
wards to northern East Asia and then eastwards to the high-latitude 
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North Pacific. This corresponding Rossby wave train provides a 
connection between the VM and East Asian regional circulation. 
The Rossby wave associated with the T7 R-CWP displays a simi-
lar propagation pattern (Fig. 4d) to East Asia along the weakened 
and southward-shifted jet stream, leading to a weakened East Asian 
Trough and stable weather conditions (Fig. 1d,f). Consequently, 
northwesterly winds are impaired, and thus, they transport less cold 
and dry air to BTH during winter (Fig. 1h). The overall similarities 
between the T7 R-CWP and VM imply a dynamic link between the 
VM and SPPDs in BTH. Note that the meridional dipolar anomaly 
over East Asia can also be partly influenced by internal variability of 
Western Pacific teleconnection37. Compared with T5, T7 has a lower 
frequency of occurrence, accounting for 10.4% of wintertime days 
in 2013–2019, 10.6% of wintertime days in 1979–2019 and 18.5% of 
the observed SPPDs in 2013–2019.

Prediction ability of the dominant climate drivers
Since there is no linearity relationship between time series of the 
EA/WR and VM (R = 0.12), they can be used to predict the fre-
quency of CWPs in BTH. A statistical scheme is established using 
the multi-linear regression method, y = ax1 + bx2 + c, in which two 
predictors (x1 and x2) denote the EA/WR and VM, while y denotes 
the predicted (observed) frequency of CWPs for T5 + T7, with 
a/b and c being regression coefficients and intercept. Both cross 
validation and independent hindcast were carried out to verify the 
capability of predicting CWPs. For cross validation, a one-year-out 

cross-validation approach was used, with any individual year out 
of 1979–2019 being the target year and the multi-linear regression 
established for the remaining 40 years. As for independent hind-
casts, the period of 1979–2012 was used for training and another 
period of 2013–2019 was used for the evaluation of prediction. 
Figure 5a shows the 1979–2019 cross-validation test. The correla-
tion coefficient, root mean square error and percentage of the same 
mathematical sign in Fig. 5a are 0.68, 7.68 days and 80.5% (33/41), 
respectively, indicating a proper stability of our prediction model. 
In Fig. 5b, the predicted CWPs by independent hindcast can suc-
cessfully reproduce the interannual variability of observed CWPs 
in 2013–2019. The overall period 1979–2019 predictions have a 
significant correlation with observations, with correlation coeffi-
cient and root mean square error being 0.73 and 7.24 days (Fig. 5c), 
respectively. Therefore, we conclude that, with the help of seasonal 
forecast from climate models (Supplementary Text 2), the EA/WR 
and VM can be used to predict the future wintertime frequency of 
CWPs in BTH.

In summary, in this study, we identified the dominant climate 
factors that cause wintertime SPPDs in BTH. The EA/WR tele-
connection pattern was found to be the dominant climate fac-
tor (inducing 36.3% of the observed SPPDs over 2013–2019) that 
results in CWPs for SPPDs in North China through the propagation 
of large-scale stationary waves originating from the mid- to high 
latitudes of the North Atlantic to East Asia via western Europe and 
western Russia. The VM SSTAs in the North Pacific Ocean were 
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found to be the second predominant climate factor (inducing 18.5% 
of the observed SPPDs over 2013–2019) leading to SPPDs in North 
China by a wave train extending from the western North Pacific 
to the high-latitude North Pacific. The indices of the EA/WR and 
VM (Figs. 3c and 4c) can be used to predict wintertime SPPDs over 
BTH, offering guidance for emission reduction strategy.
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Methods
Observation data. The PM2.5 data from December 2013 to February 2020 used in 
this study are obtained from the Chinese Ministry of Ecology and Environment. A 
longer record of PM2.5 dataset over 2009–2020 from the US Embassy in Beijing is 
also used. This dataset has been widely used in previous studies and is reported to 
well represent PM2.5 variation in BTH1,29,38–40. The daily average PM2.5 is processed 
and quality controlled following a previous study2. The cities with continuous PM2.5 
observations since 2013 are displayed in Extended Data Fig. 1a. Daily meteorology 
fields, including geopotential heights and winds at different pressure levels and 
mean sea-level pressure, are from the fifth-generation reanalysis from ERA5 with 
a resolution of 2.5° × 2.5° downloaded from the Copernicus Climate Change 
Service (2017)41. Daily outputs from NCEP/NCAR Reanalysis 1 (NCEP1)42 and 
NCEP-DOE Reanalysis 2 (NCEP2)43, including U200, Z500 and V850, were also 
utilized to construct R-CWPs for comparison with ERA5 R-CWPs.

The observed SSTs are from the Hadley Centre44. The anomaly of a parameter 
on a specific day is calculated relative to the daily climatology spanning 40 
years (1979–2018). The EA/WR pattern is defined as the second leading rotated 
empirical orthogonal function mode of the 500 hPa geopotential height in the 
region 15°–85° N, 70° W–140° E30,45, and its climate impact extends from eastern 
North America to Eurasia through wave-train propagation. The VM is defined 
as the second leading mode of the SST in the North Pacific Ocean (20°–61° N, 
100° E–80° W).

Classification of weather patterns during SPPDs. We identify the wintertime 
typical weather patterns during 2013–2019 by using obliquely rotated principal 
component analysis in T mode (T-PCA), which is commonly used to classify 
circulation patterns46. This method has also been employed to investigate 
the circulation patterns that are conducive to particulate pollution in North 
China2,47,48 and the Yangtze River delta49. In this study, we use the T-PCA method 
in the Cost733class software package (http://cost733.met.no) to identify typical 
circulation patterns during DJF in BTH from 2013 to 2019. More details of the 
T-PCA procedure in Cost733class can be found in the literature2,50. In addition to 
the three key meteorological parameters of U200, Z500 and V850, we test other 
associated variables reported by previous studies. As shown in Extended Data 
Fig. 2, the regions with maximum variability of the near-surface relative humidity 
(RH1000, Extended Data Fig. 2d) are too regional compared with U200, Z500 
and V850, leading to little influence on the classification results. The regression 
coefficients of the temperature inversion (Extended Data Fig. 2e) display nearly the 
same pattern as those of Z500 (Extended Data Fig. 2b).

The classification performance is evaluated by the explained variation and 
pseudo F values (Extended Data Fig. 4a). Seven weather patterns are classified, 
among which two conducive weather pattern types are identified. Although six 
classifications result in better performance from a meteorological perspective, 
seven types can better distinguish the CWPs (Extended Data Fig. 4b–e). After 
selecting the appropriate classification, historical daily DJF weather samples from 
1979 to 2019 are assigned to the corresponding CWPs with the smallest Euclidean 
distance, which is also performed in the Cost733class software51.

Wave activity fluxes. The dynamic mechanism by which a climate factor (or 
pattern) leads to CWPs for the formation of SPPDs is usually a teleconnection, 
which can be measured by wave activities52. In this study, the horizontal wave-train 
flux53 is calculated by using meteorological variables (for example, geopotential 
height, air density and pressure level) to display the stream function (wave energy 
pattern) and intensity and direction of wave propagation. On the basis of the 
horizontal wave-train flux, we can diagnose the source and propagation direction 
of stationary waves that lead to CWPs for the formation of SPPDs. This approach 
has been widely used to examine the relationship between climate factors and 
circulation patterns for haze pollution in China20,21,25.

Data availability
The analytic data that support the major results are accessible at figshare (https://
figshare.com/s/be3b2c64e0757e805bf7). The surface PM2.5 observations from 
the Chinese Ministry of Ecology and Environment can be obtained from 
http://106.37.208.233:20035/ and https://quotsoft.net/air/. The surface PM2.5 
observations for the US Embassy in Beijing are downloaded from https://www.
airnow.gov/international/us-embassies-and-consulates/#China$Beijing. The ERA5 
reanalysis data are available from https://cds.climate.copernicus.eu/cdsapp#!/
search. The NCEP1 renalysis data are available from https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis.html. The NCEP2 reanalysis data are available from 
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. The observed sea 
surface temperatures from the Hadley Centre are downloaded from https://www.
metoffice.gov.uk/hadobs/hadisst/data/download.html. Source data are provided 
with this paper.

Code availability
The Cost733class software is open source (http://cost733.met.no/).
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Extended Data Fig. 1 | Correlation between daily meteorology anomalies and winter PM2.5. a, Topographic map of the North China Plain (shading, unit: 
m) and locations of cities (black dots) with observed PM2.5 concentrations used in this study. b-m, Distribution of correlation coefficients between daily 
mean PM2.5 concentrations and daily meteorological fields during DJFs from 2013 to 2019. Stippled regions in b-m denote those areas exceeding the 95% 
significance level based on the Student’s t-test. The blue line is the boundary of the BTH region.
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Extended Data Fig. 2 | regression between daily meteorological anomalies and winter PM2.5. Distribution of regression coefficients between daily mean 
PM2.5 concentrations with daily (a) U200, (b) Z500, (c) V850, (d) RH1000 (relative humidity at 1000 hPa) and (e) Deltem_850_250 (vertical difference 
in the temperature anomalies between 850 hPa and 250 hPa) during DJFs from 2013 to 2019. Stippled regions denote those areas exceeding the 95% 
significance level based on the Student’s t-test. The blue line is the boundary of the BTH region. The black rectangles in a-c are selected regions for each 
variable.
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Extended Data Fig. 3 | Composited weather patterns for t1–t7 during the DJFs of 2013–2019. a-bb, Composite anomalies of (a-g) U200 (units: m s−1),  
(h-n) Z500 (units: m), (o-u) V850 (units: m s−1), and (v-bb) pressure-longitude cross sections of the relative humidity (shadings, units: %) and 
temperature (contour, unit: °C) for each weather type. The gray contours in a-g are the western jet streams calculated by the DJF means of U200 from 
1979 to 2018. The cross sections in v-bb are averaged over 30–40°N, and areas between the two black dashed lines denote the BTH region.
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Extended Data Fig. 4 | evaluation for different classifications. a, The explained variation (EV) and pseudo-F (PF) values for different classifications. b-e, 
Box and whisker plots of the average PM2.5 concentrations (b, c) and frequencies of SPPDs (d, e) under each Type for 6 (b, d) and 7 (c, e) classes in a. The 
red dots in boxes (b, c) denote mean PM2.5 concentrations and their values are listed below boxes. The numbers above the histograms are the frequencies 
of each type in DJFs during 2013–2019, and those below the histograms are the SPPDs frequencies within each type.
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Extended Data Fig. 5 | Long-term variations of reconstructed conducive weather patterns using different reanalysis datasets. a-c, Time series 
of occurrence frequencies for the R-CWPs in winters of 1979–2019 by using the ERA5 (red), NCEP1(blue), and NCEP2 (green) reanalysis datasets, 
respectively. The inset texts in the top right corner of each panel denote correlation coefficients between R-CWPs with ERA5 reanalysis and R-CWPs using 
NCEP1 and NCEP2 reanalysis in 1979-2019, respectively.
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Extended Data Fig. 6 | reconstructed conducive weather patterns for t5 and t7 over the years of 1979–2019. a-h, Composite anomaly distributions of 
(a, b) U200 (units: m s−1), (c, d) Z500 (units: m), (e, f) V850 (units: m s−1) and (g, h) pressure-longitude cross sections of the relative humidity (shadings, 
units: %) and temperature (contour, unit: °C) for the reconstructed T5 and T7 weather types. The gray contours in a and b are the western jet streams 
calculated by the DJF means of U200 from 1979 to 2018. The cross sections are averaged over 30–40°N, and areas between the two black dashed lines 
denote the BTH region. The “Pattern corr” in a-f denote the pattern correlation between the composites in Fig. 1c-h and a-f.
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Extended Data Fig. 7 | relationship between t5 and atmospheric indices. Heatmap of correlation coefficients between various atmospheric indices and 
frequency of reconstructed T5 weather pattern. Correlation coefficients between the time series of T5/T7 and climate indices in Extended Data Figs. 7-9 
are all detrended to remove linear trends.
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Extended Data Fig. 8 | relationship between t7 and atmospheric indices. Heatmap of correlation coefficients between various atmospheric indices and 
frequency of reconstructed T5 weather pattern.
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Extended Data Fig. 9 | relationship between t5/t7 and sst indices. Heatmap of correlation coefficients between SST indices and frequency of 
reconstructed T5 (top panel) and T7 (bottom panel) weather pattern.
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