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Abstract. We illustrate the nonlinear relationships among
anthropogenic NOx emissions, NO2 tropospheric vertical
column densities (TVCDs), and NO2 surface concentrations
using model simulations for July 2011 over the contigu-
ous United States (CONUS). The variations in NO2 surface
concentrations and TVCDs are generally consistent and re-
flect anthropogenic NOx emission variations for high an-
thropogenic NOx emission regions well. For low anthro-
pogenic NOx emission regions, however, nonlinearity in
the anthropogenic-emission–TVCD relationship due to emis-
sions from lightning and soils, chemistry, and physical pro-
cesses makes it difficult to use satellite observations to in-
fer anthropogenic NOx emission changes. The analysis is
extended to 2003–2017. Similar variations in NO2 surface
measurements and coincident satellite NO2 TVCDs over ur-
ban regions are in sharp contrast to the large variation dif-
ferences between surface and satellite observations over ru-
ral regions. We find a continuous decrease in anthropogenic
NOx emissions after 2011 by examining surface and satellite
measurements in CONUS urban regions, but the decreasing
rate is lower by 9 %–46 % than the pre-2011 period.

1 Introduction

Anthropogenic emissions of nitrogen oxides
(NOx = NO2 + NO) adversely affect the environment,
not only because of their direct detrimental impacts on
human health (Greenberg et al., 2016, 2017; Heinrich et
al., 2013; Weinmayr et al., 2009) but also because of their

fundamental roles in the formation of ozone, acid rain, and
fine particles, all of which have negative environmental
impacts (Crouse et al., 2015; Kampa and Castanas, 2008;
Myhre et al., 2013; Pandey et al., 2005; Singh and Agrawal,
2007). About 48.8 Tg N yr−1 of NOx are emitted globally
from both anthropogenic (77 %) and natural (23 %) sources,
such as fossil fuel combustion, biomass and biofuel burning,
soil bacteria, and lightning (Seinfeld and Pandis, 2016). In
total, 3.85, 0.24, and 0.66 Tg N of anthropogenic, soil, and
lightning NOx , respectively, were emitted from the US in
2014 on the basis of the 2014 National Emission Inventory
(NEI2014) and the GEOS-Chem model simulations (Silvern
et al., 2019); vehicle sources and fuel combustions ac-
counted for 93 % of the total anthropogenic NOx emissions
(EPA, 2017).

The US anthropogenic NOx emissions during the 2010s
declined dramatically compared to the mid-2000s (EPA,
2018b; Xing et al., 2013) due to stricter air quality regula-
tions and emission control technology improvements, such
as the phase-in of Tier II vehicles during 2004–2009 and
the switch of power plants from coal to natural gas (De
Gouw et al., 2014; McDonald et al., 2018). The overall re-
duction (about 30 %–50 %) of anthropogenic NOx emissions
from the mid-2000s to the 2010s was corroborated by ob-
served decreases in vehicle NOx emission factors, NO2 sur-
face concentrations, nitrate wet deposition flux (Fig. S1 in
the Supplement), and NO2 tropospheric vertical column den-
sities (TVCDs) (Bishop and Stedman, 2015; Georgoulias et
al., 2019; Li et al., 2018; McDonald et al., 2018; Miyazaki
et al., 2017; Russell et al., 2012; Tong et al., 2015). How-
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ever, the detailed NOx emission changes after the Great Re-
cession (from December 2007 to June 2009) are highly un-
certain. On the one hand, the U.S. Environmental Protec-
tion Agency (EPA) estimated that the Great Recession had
a slight impact on the anthropogenic NOx emission trend
and the anthropogenic NOx emissions decreased steadily
from 2002 to 2017 (Fig. S2), although the emission decrease
rate slowed down by about 20 % after 2010 (−5.8 % yr−1

for 2002–2010 and −4.7 % yr−1 for 2010–2017; Table 1)
(EPA, 2018b). Fuel-based emission estimates in Los Angeles
also showed a steady decrease in anthropogenic NOx emis-
sions after 2000 and a small impact of the Great Recession
on the anthropogenic NOx emission decrease trend (Hassler
et al., 2016). The continuous decrease in anthropogenic NOx
emissions was consistent with the ongoing reduction in vehi-
cle emissions (McDonald et al., 2018). On the other hand,
Miyazaki et al. (2017) and Jiang et al. (2018) found that
the US NOx emissions derived from satellite NO2 TVCDs,
including OMI (the Ozone Monitoring Instrument), SCIA-
MACHY (SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartography), and GOME-2A (Global Ozone
Monitoring Experiment 2 onboard METOP-A), were almost
flat from 2010–2015 and suggested that the decrease in NOx
emissions was only significant before 2010, which was com-
pletely different from the bottom–up and fuel-based emission
estimates.

A complicating factor in inferring anthropogenic NOx
emission trends from the observations of NO2 surface con-
centrations and satellite NO2 TVCDs is their nonlinear de-
pendences on anthropogenic NOx emissions (Gu et al., 2013,
2016; Lamsal et al., 2011). Although the decrease rates of
both NO2 surface concentrations and coincident OMI NO2
TVCDs slowed down after the Great Recession over the
United States, Tong et al. (2015), Lamsal et al. (2015), and
Jiang et al. (2018) found that the slowdown of the decrease
rates derived from NO2 surface concentrations is 12 %–79 %
less than those of NO2 TVCDs (Table 1). Secondly, the
slowdown of the decrease rates of NO2 surface concentra-
tions and OMI TVCDs over cities and power plants (Rus-
sell et al., 2012; Tong et al., 2015) is significantly less than
those over the whole contiguous United States (CONUS)
(Jiang et al., 2018; Lamsal et al., 2015). Moreover, Zhang et
al. (2018) found that filtering out lightning-affected measure-
ments could significantly improve the comparison of NO2
surface concentration and OMI NO2 TVCD trends over the
CONUS.

In this study, we carefully investigate the relationships
among anthropogenic NOx emissions, NO2 surface concen-
trations, and NO2 TVCDs over the CONUS and evaluate the
impact of the relationships on inferring anthropogenic NOx
emission changes and trends from surface and satellite obser-
vations. Section 2 describes the model and datasets used in
this study, including the Regional chEmistry and trAnsport
Model (REAM), the EPA Air Quality System (AQS) NO2
surface observations, and NO2 TVCD products from OMI,

GOME-2A, GOME-2B (GOME2 onboard METOP-B), and
SCIAMACHY. In Sect. 3, we examine the nonlinear rela-
tionships among anthropogenic NOx emissions, NO2 surface
concentrations, and NO2 TVCDs using model simulations.
Accounting for the effects of background sources, physical
processes, and chemical nonlinearity, we then investigate the
anthropogenic NOx emission trends and changes from 2003
to 2017 over the CONUS. Finally, Sect. 4 gives a summary
of the study.

2 Model and data description

2.1 REAM

REAM has been applied and evaluated in many research ap-
plications including ozone simulation and forecast, emission
inversion and evaluations, and mechanistic studies of chem-
ical and physical processes (Alkuwari et al., 2013; Cheng
et al., 2017, 2018; Choi et al., 2008a, b; Gu et al., 2013,
2014; Koo et al., 2012; Liu et al., 2012, 2014; Wang et al.,
2007; Yang et al., 2011; Zhang et al., 2017, 2018; Zhang
and Wang, 2016; Zhao and Wang, 2009; Zhao et al., 2009a,
2010). REAM as used in this work, the model domain of
which is shown in Fig. 3, has 30 vertical layers in the tro-
posphere, and the horizontal resolution is 36× 36 km2. The
model is driven by meteorology fields from a Weather and
Research Forecasting (WRF, version 3.6) model simulation
initialized and constrained by the NCEP coupled forecast
system model version 2 (CFSv2) products (Saha et al., 2011).
The chemistry mechanism is based on GEOS-Chem v11.01
with updated reaction rates and aerosol uptake of isoprene
nitrates (Fisher et al., 2016). Chemistry boundary conditions
and initializations are from a GEOS-Chem (2◦× 2.5◦) sim-
ulation. Hourly anthropogenic emissions on weekdays are
based on the 2011 National Emission Inventory (NEI2011),
while weekend anthropogenic emissions are set to be two-
thirds of the weekday emissions (Beirle et al., 2003; Choi et
al., 2012). Biogenic volatile organic compound (VOC) emis-
sions are estimated using the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) v2.10 (Guenther et al.,
2012). NOx emissions from soils are based on the Yienger
and Levy (YL) scheme (Li et al., 2019; Yienger and Levy,
1995). The cloud-to-ground (CG) lightning flashes are cal-
culated following Choi et al. (2005) and Zhao et al. (2009a)
with the parameterization of the CG flash rate as a function of
convective mass fluxes and convective available potential en-
ergy (CAPE). The ratios of intra-cloud (IC) lightning flashes
to CG flashes are parameterized as a function of the height
between the freezing layer and the cloud top (Luo et al.,
2017; Price and Rind, 1992). In this study, 250 mol of NO are
emitted per CG or IC flash (Zhao et al., 2009a). As a result,
on weekdays in July 2011, REAM has mean anthropogenic
NOx emissions of 7.4× 1010 molecules cm−2 s−1, mean soil
NOx emissions of 1.2× 1010 molecules cm−2 s−1, and mean
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lightning NOx emissions of 3.4× 1010 molecules cm−2 s−1

over the CONUS.

2.2 Satellite NO2 TVCDs

In this study, we use NO2 TVCD products from four satellite
sensors in the past decade, including SCIAMACHY, GOME-
2A, GOME-2B, and OMI – the spectrometers onboard sun-
synchronous satellites to monitor atmospheric trace gases.
The SCIAMACHY instrument onboard the Environmental
Satellite (ENVISAT) has an Equator overpass time of 10:00
local time (LT) and a nadir pixel resolution of 60× 30 km2.
The GOME-2 instruments on Metop-A (named GOME-2A)
and Metop-B (GOME-2B) satellites cross the Equator at
09:30 LT and have a nadir resolution of 80× 40 km2. Af-
ter 15 July 2013, the nadir resolution of GOME-2A be-
came 40× 40 km2 with a smaller scanning swath. The OMI
onboard the EOS-Aura satellite has a nadir resolution of
24× 13 km2 and overpasses the Equator around 13:45 LT.
More detailed information about these instruments is sum-
marized in Table S1. These instruments measure backscat-
tered solar radiation from the atmosphere in the ultraviolet
and visible wavelength. The radiation measurements in the
wavelength of 402–465 nm are then used to retrieve NO2
vertical column densities (VCDs). The retrieval process con-
sists of three steps: (1) converting radiation observations to
NO2 slant column densities (SCDs) by using the differen-
tial optical absorption spectroscopy (DOAS) spectral fitting
method; (2) separating tropospheric SCDs and stratospheric
SCDs from the total NO2 SCDs; (3) dividing the NO2 tropo-
spheric SCDs by the tropospheric air mass factors (AMFs) to
compute TVCDs.

The product archives we use in this study include GOME-
2B (TM4NO2A v2.3), SCIAMACHY (QA4ECV v1.1),
GOME-2A (QA4ECV v1.1), OMI (QA4ECV v1.1, here-
after referred to as OMI-QA4ECV), OMNO2 (SPv3, here-
after referred to as OMI-NASA), and the Berkeley High-
Resolution NO2 products (v3.0B, hereafter referred to as
OMI-BEHR). OMI-BEHR uses the tropospheric SCDs from
OMI-NASA products but updates some inputs for the tro-
pospheric AMF calculation (Laughner et al., 2018b). These
product archives have been previously validated (Boersma et
al., 2018; Drosoglou et al., 2017, 2018; Krotkov et al., 2017;
Laughner et al., 2018b; Wang et al., 2017; Zara et al., 2018).
Generally, the pixel-size uncertainties of these products are
> 30 % over polluted regions under clear-sky conditions. We
summarize the basic information about these products in Ta-
ble S2. To keep the high quality and sampling consistency of
NO2 TVCD datasets, we chose pixel-size NO2 TVCD data
using the criteria listed in Table S3. After the selection, we
re-gridded the pixel-size data into the REAM 36× 36 km2

grid cells and calculated the seasonal means of each grid
cell with corresponding daily values on weekdays (winter:
January, February, and December; spring: March, April, and
May; summer: June, July, and August; autumn: September,

October, and November). We excluded weekend data in this
study to minimize the impacts of weekend NOx emission re-
duction, leading to different NO2 TVCDs between weekdays
and weekends (Fig. S3).

Satellite TVCD measurements can show large variations
and apparent discontinuities due in part to the effects of
cloud, lightning NOx , the shift in satellite pixel coverage,
and retrieval uncertainties (Fig. S3; e.g., Boersma et al.,
2018; Zhang et al., 2018). However, continuous and consis-
tent measurements are required for reliable trend analyses. In
addition to the criteria of data selection in Table S3, we com-
pute the seasonal relative 90th percentile confidence interval,
defined as RCI = (X(95th percentile) – X(5th percentile)) /
mean(X), where X is the daily NO2 TVCD for a given sea-
son. To compute the seasonal trend, we require that RCI is
< 50 % for the selected season every year in the analysis pe-
riod (Table S3). About 45 % of data are removed as a result.

2.3 Surface NO2 measurements

Hourly surface NO2 measurements from 2003 to 2017 are
from the EPA AQS monitoring network (archived on https:
//www.epa.gov/outdoor-air-quality-data, last access: 27 June
2018). Most AQS monitoring sites use the Federal Reference
Method (FRM) gas-phase chemiluminescence to measure
NO2. Few sites use the Federal Equivalent Method (FEM)
photolytic chemiluminescence or the cavity attenuated phase
shift spectroscopy (CAPS) method. FRM and FEM are in-
direct methods, in which NO2 is first converted to NO and
then NO is measured through chemiluminescence measure-
ment of NO2* produced by NO+O3. The difference is that
FRM uses heated catalysts for the conversion of NO2 to NO
and FEM uses photolysis of NO2 to NO. The conversion to
NO in the FRM instruments is not specific to NO2, and non-
NOx active nitrogen compounds (NOz) can also be reduced
by the catalysts, which would cause high biases of NO2 mea-
surements, while the FEM is sensitive to the photolysis con-
version efficiency of NO2 to NO (Beaver et al., 2012, 2013;
Lamsal et al., 2015). The CAPS method directly determines
NO2 concentrations based on an NO2-induced phase shift
measured by a photodetector. The CAPS instrument oper-
ates at a wavelength of about 450 nm and may overestimate
NO2 concentrations due to the absorption of other molecules
at the same wavelength (Beaver et al., 2012, 2013; Kebabian
et al., 2005).

Due to the different characteristics of the above three
methods and demonstrated biases between the FRM and
the FEM by Lamsal et al. (2015), we firstly investigate the
measurement discrepancies among the above three methods.
There are three sites having FRM and FEM measurements
simultaneously during some periods from 2013 to 2014, two
sites having both FRM and CAPS data during some peri-
ods from 2015 to 2016, and one site using all three measure-
ment methods during some periods in 2015. Figure S4 shows
the hourly averaged ratios of FEM and CAPS to FRM data
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Figure 1. Region definitions and locations of NO2 surface observa-
tion sites used in this study.

for four seasons during 2013–2016. The CAPS/FRM ratios
are in the range of 0.94–1.06, and the FEM/FRM ratios are
0.86–1.11. Furthermore, Zhang et al. (2018) discussed that
the relative trends are not affected by scaling the observation
data. As in the work by Zhang et al. (2018), we analyze the
relative trends in the surface NO2 data. We, therefore, did not
scale the FRM data. At sites with FEM or CAPS measure-
ments, we use these measurements in place of FRM data. If
both FEM and CAPS data are available, we use the averages
of the two datasets.

Since NO2 surface concentrations have significant di-
urnal variations (Fig. S5), we choose the data at 09:00–
10:00 LT for comparison with GOME-2A/2B data, those at
10:00–11:00 LT for comparison with SCIAMACHY data,
and those at 13:00–14:00 LT for OMI data. The seasonal
RCI< 50 % requirement is also used here to be consistent
with the analysis of satellite TVCD data, and thus about
1.5 % of the data is removed. We also require that the mea-
surement site must have valid measurements in the afore-
mentioned 3 h for at least one season from 2003 to 2017.
The locations of the 179 selected sites using the site selec-
tion criteria are shown in Fig. 1. The region definitions fol-
low the U.S. Census Bureau (https://www2.census.gov/geo/
pdfs/maps-data/maps/reference/us_regdiv.pdf, last access: 6
February 2019).

3 Results and discussions

3.1 Nonlinear relationships among anthropogenic NOx

emissions, NO2 surface concentrations, and NO2
TVCDs

NO2 surface concentrations and NO2 TVCDs are not linearly
correlated with NOx emissions due to chemical nonlinear-

ity, NO2 hydrolysis on aerosols (NO2
aerosol,H2O
−→ 0.5HNO3+

0.5HNO2), dry deposition, transport effects, and background
sources (Gu et al., 2013; Lamsal et al., 2011). Therefore, it is
necessary to first investigate the nonlinearities among NOx
emissions, NO2 surface concentrations, and TVCDs over the
CONUS before we compare the trends between NO2 surface

concentrations and TVCDs. The nonlinearity between NOx
emission and NO2 TVCD is analyzed by examining the local
sensitivity of NO2 TVCD to NOx emissions (Gu et al., 2013;
Lamsal et al., 2011; Tong et al., 2015), which is defined as
β in Eq. (1). We further define γ as the sensitivity of NO2
surface concentration to NOx emission:

1E

E
= β

1�

�
, (1)

1E

E
= γ

1c

c
, (2)

where E denotes NOx emission and E denotes the change
in NOx emission; � denotes NO2 TVCD, c denotes surface
NO2 concentration, and 1� and 1c denote the correspond-
ing changes.

We computed β and γ values for July 2011 over the
CONUS using REAM. To compute local β and γ values,
we added another independent group of chemistry species
(“group 2”) in REAM in order to compute the standard and
sensitivity simulations concurrently. The original chemical
species in the model (“group 1”) were used in the standard
simulation. For group 2 chemical species, anthropogenic
NOx emissions were reduced by 15 %. In the model simula-
tion, we first computed the advection of group 1 tracers. The
horizontal tracer fluxes were therefore available. All influxes
into a grid cell for the group 2 tracer simulation were from
the group 1 tracer simulation; only outfluxes were computed
using group 2 tracers. The outflux was one way in that ni-
trogen species were transported out but the transport did not
affect adjacent grid cells because the influxes were from the
group 1 tracer simulation. Using this procedure, the effects of
anthropogenic NOx emission reduction were localized. The
β and γ values were computed by the ratio of TVCD and
surface concentration changes to a 15 % change in anthro-
pogenic NOx emissions.

Figure 2 shows the distributions of our β and γ ratios as
a function of anthropogenic NOx emissions for July 2011
over the CONUS. Results essentially the same as Fig. 2 were
obtained when a perturbation of 10 % was used for anthro-
pogenic NOx emissions. Figure S6 shows the distributions of
NO2 TVCD fraction in the boundary layer at 13:00–14:00 LT
and 10:00–11:00 LT and the fraction of soil NOx emissions
in all surface sources (soil+ anthropogenic) on weekdays
for July 2011. In Fig. S7, we analyzed the contributions of
background sources, chemical nonlinearity, and other fac-
tors (transport, NO2 hydrolysis on aerosols, and dry deposi-
tion) to the nonlinear relationships (β and γ ) among anthro-
pogenic NOx emissions, NO2 surface concentrations, and
NO2 TVCDs. While the model simulation is for 1 summer
month, several key points on the surface and column con-
centration sensitivities to anthropogenic NOx emissions have
implications for comparing the trends of AQS and satellite
TVCD data.
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1. Both β and γ values are negatively correlated with
anthropogenic NOx emissions due to chemical non-
linearity, transport, and background NOx contributions
(Figs. 2, S6, and S7) (Gu et al., 2016; Lamsal et al.,
2011). It is consistent with the distribution of β as a
function of NOx emissions in China (Gu et al., 2013),
although the β ratios for the US are generally larger than
for China due primarily to different emission distribu-
tions of NOx and VOCs and regional circulation pat-
terns (Zhao et al., 2009b).

2. The uncertainties of β and γ values increase signifi-
cantly as anthropogenic NOx emissions decrease, which
means regions with low anthropogenic NOx emissions
are more sensitive to environmental conditions, such as
NOx transport from nearby regions which may even
produce negative β and γ values (Figs. 2 and S7).

3. The value of γ is generally less than β, especially for
low anthropogenic NOx emission regions, which re-
flects the significant contribution of free tropospheric
NO2 to NO2 TVCD but not to NO2 surface concentra-
tions (Figs. 2, S6, and S7).

4. Generally, the standard deviations of β and γ tend to
be larger at 10:00–11:00 LT than at 13:00–14:00 LT, re-
flecting a stronger transport effect due to weaker chem-
ical losses in the morning (Figs. 2 and S7).

5. Both β and γ values are significantly less than
1 at 13:00–14:00 LT (β = 0.75 and γ = 0.84)
when anthropogenic NOx emissions are
> 4× 1012 molecules cm−2 s−1, but they are close
to 1 at 10:00–11:00 LT (β = 0.97 and γ = 1.03), which
reflects stronger chemistry nonlinearity at noontime
than in the morning (Figs. 2 and S7).

6. Both background sources and non-emission factors con-
tribute much more to β and γ values in low anthro-
pogenic NOx emission regions than in high anthro-
pogenic NOx emission regions (Fig. S7).

7. Chemical nonlinearity contributes much less to β and γ
values than background sources and transport effects in
low anthropogenic NOx emission regions (Fig. S7).

8. Generally, non-emission factors (mainly transport) con-
tribute more to β and γ values than background sources
in low anthropogenic NOx emission regions (Fig. S7c
and d) except for the first bin where background sources
contribute more to β and γ values than non-emission
factors at 10:00–11:00 LT, which is partly caused by
some grid cells with extremely low anthropogenic NOx
emissions, increasing the mean contributions of back-
ground sources in the first bin.

The largely varying β and γ values for anthropogenic
NOx emissions < 1011 molecules cm−2 s−1 imply that the

Figure 2. Distributions of β (a) and γ (b) ratios as a function of
anthropogenic NOx emissions on weekdays for July 2011 over the
CONUS. “13:00–14:00 LT” is for OMI, and “10:00–11:00 LT” is
for SCIAMACHY and GOME-2A/2B. The data are binned into
nine groups based on anthropogenic NOx emissions: E ∈ (0, 21),
[21, 22), [22, 23), [23, 24), [24, 25), [25, 26), [26, 27), [27,
28), [28, 29)× 1010 molecules cm−2 s−1. Here, (0, 21) denotes
0< emissions< 21, and [21, 22) denotes 21

≤ emissions< 22, sim-
ilar to other intervals. The green dashed line denotes a value of 1.
Error bars denote standard deviations.

trends derived from satellite TVCD data do not directly rep-
resent anthropogenic NOx emissions and that the variations
in TVCD data may not be comparable to the correspond-
ing surface NO2 concentrations. We define a region a “ur-
ban” if anthropogenic NOx emissions from NEI2011 are
> 1011 molecules cm−2 s−1. All the other regions are defined
as “rural”. Figure 3 shows the distributions of anthropogenic
NOx emissions and urban and rural regions defined in this
study. Such defined urban regions account for 69.8 % of the
total anthropogenic NOx emissions over the CONUS, the
trend of which is, therefore, representative of anthropogenic
emission changes. A caveat is that some urban regions would
become rural if anthropogenic NOx emissions decreased af-
ter 2011 as the EPA anthropogenic NOx emission trend sug-
gested (Fig. S2). In a sensitivity study, we define an urban
region using a stricter criterion of anthropogenic NOx emis-
sions> 2×1011 molecules cm−2 s−1, and the analysis results
are similar to those shown in the next section.

3.2 Trend comparisons between NO2 AQS surface
concentrations and coincident satellite NO2
tropospheric VCD over urban and rural regions

By using anthropogenic NOx emissions of
1011 molecules cm−2 s−1 as the threshold value, 157
AQS sites are urban, and the remaining 22 sites are rural.
Their properties are summarized in Table 2. Figure 4 shows
the relative annual variations in AQS NO2 surface measure-
ments at 13:00–14:00 LT and coincident OMI-QA4ECV
NO2 TVCD data from 2005 to 2017 in each season for urban
and rural regions. The contrast between the two regions
is apparent in all seasons. For comparison purposes, we
scale the time series of TVCD and AQS surface NO2 to

Atmos. Chem. Phys., 19, 15339–15352, 2019 www.atmos-chem-phys.net/19/15339/2019/
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Figure 3. Spatial distributions of (a) anthropogenic NOx emissions
(unit: 1010 molecules cm−2 s−1) and (b) urban regions satisfying
our selection criteria. In (b), light green and blue denote the result-
ing urban and rural regions, respectively.

their corresponding 2005 values, and the resulting data
are therefore unitless. Over urban regions, NO2 surface
concentrations are highly correlated with NO2 TVCDs
(TVCD= 1.03×AQS+ 0.11, R2

= 0.98), reflecting the
comparable and stable β and γ values (Fig. 2). However,
over rural regions, the scaled TVCD data significantly
deviate from AQS NO2 data (TVCD= 1.15×AQS+ 0.09,
R2
= 0.87). It is noteworthy that the discrepancies between

urban and rural data are smaller in winter than in spring,
summer, and autumn due to a more dominant role of
transport than chemistry and lower natural NOx emissions
in winter.

We also examine the correlations of AQS NO2 surface
concentrations with coincident OMI-NASA, OMI-BEHR,
SCIAMACHY, GOME-2A, and GOME-2B TVCD mea-
surements. The results of OMI-NASA and OMI-BEHR
are similar to those of OMI-QA4ECV (Fig. 4). SCIA-
MACHY and GOME-2B TVCD observations at 09:00–
11:00 LT also show a large contrast between urban
(SCIAMACHY: TVCD= 0.92×AQS− 0.005, R2

= 0.94;

Figure 4. Relative annual variations in AQS NO2 surface concen-
trations and coincident OMI-QA4ECV NO2 TVCD in each sea-
son from 2005 to 2017 for urban (left column) and rural (right col-
umn) regions. The observation data are scaled by the corresponding
2005 values. Black and red lines denote AQS surface observations
and OMI-QA4ECV NO2 TVCDs, respectively. Shading in a lighter
color is added to show the standard deviation of the results; when
uncertainty is small due in part to a large number of data points,
shading may not show up.

GOME-2B: TVCD= 0.54×AQS+ 0.56, R2
= 0.96) and

rural regions (SCIAMACHY: TVCD= 0.77×AQS+ 0.83,
R2
= 0.63; GOME-2B: TVCD= 0.46×AQS+ 0.73, R2

=

0.59). The correlation of coincident GOME-2A NO2 TVCD
data with AQS surface concentrations is poor for ru-
ral (TVCD= 0.65×AQS+ 0.56, R2

= 0.44) and urban
(TVCD= 0.31×AQS+ 0.56, R2

= 0.21) regions (Fig. S8),
which likely reflects the degradation of the GOME-2A in-
strument causing a significant increase in NO2 SCD un-
certainties (Boersma et al., 2018). Therefore, we excluded
GOME-2A in the analysis hereafter.
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Table 2. Properties of urban and rural regions in July 2011.

Surface Anthropogenic
area NOx emissions β at γ at β at γ at

Type fraction1 (×1010 molecules cm−2 s−1) 13:00–14:00 LT 13:00–14:00 LT 10:00–11:00 LT 10:00–11:00 LT

Urban/CONUS2 17.3 % 29.9 2.5± 1.0 1.5± 0.4 2.6± 1.9 1.6± 1.2
Rural/CONUS 82.7 % 2.7 16.9± 16.4 8.5± 11.7 12.2± 14.0 6.4± 11.6
Urban/AQS 87.7 % 71.0 1.6± 0.8 1.2± 0.4 1.7± 1.1 1.3± 0.6
Rural/AQS 12.3 % 5.7 8.7± 9.9 5.2± 8.8 5.4± 15.1 3.8± 11.7

1 “Fraction” denotes the percentages of urban or rural data points for the whole CONUS or all AQS sites. 2 “Urban-CONUS” denotes CONUS urban grid cells; “Urban-AQS” denotes
AQS urban site grid cells.

We further investigate OMI-QA4ECV NO2 TVCD rela-
tive annual variations from 2005 to 2017 over the regions
with different anthropogenic NOx emissions in Fig. 5. We
find clear flattening of NO2 TVCD variations as anthro-
pogenic NOx emissions decrease, which is consistent with
the above analysis. Similar to Fig. 4, the spread of TVCD
variation is much less in winter than the other seasons. The
differences between Figs. 5 and 4 are due to a much larger
dataset used in the former than the latter. Only coincident
AQS and OMI-QA4ECV data are used in Fig. 4, but all OMI-
QA4ECV data are used in Fig. 5.

3.3 Trend analysis of AQS NO2 surface concentrations,
satellite TVCDs, and updated EPA NOx emissions

We first updated the Continuous Emission Monitoring Sys-
tems (CEMS) measurement data used in the EPA NOx emis-
sion trend datasets with the newest datasets obtained from
https://ampd.epa.gov/ampd/ (last access: 17 June 2018). As
shown in Fig. S2, the updated CEMS data lead to a reduc-
tion in anthropogenic NOx emissions during the Great Re-
cession (2008–2009) and a recovery period in 2010–2011.
The sharp drop during the Great Recession and the flattening
trend right after the Great Recession are captured by OMI
NO2 and SCIAMACHY TVCD products (Figs. 4, 6, and S9)
and AQS NO2 surface measurements (Figs. 4, 6, and S5) and
are also noted by Russell et al. (2012) and Tong et al. (2015)
(Table 1).

In Fig. 6, we show the comparisons among the relative
variations in the updated EPA anthropogenic NOx emis-
sions, AQS NO2 surface measurements at 10:00–11:00 LT
and 13:00–14:00 LT, and coincident satellite NO2 TVCDs
for urban regions in four seasons from 2003 to 2017. Also
shown are the comparisons among the updated EPA anthro-
pogenic NOx emissions and satellite NO2 TVCDs. There are
many more data points for the latter comparison because the
data selection is no longer limited to those coincident with
the AQS surface data, and therefore, the uncertainty spread
is much lower. The comparisons, in general, show that the
updated EPA anthropogenic NOx emissions, AQS surface
measurements, and satellite TVCD data are in agreement.
The agreement of decreasing trends among the datasets is

just as good for the post-2011 period as the pre-2011 period.
This result differs from Miyazaki et al. (2017) and Jiang et
al. (2018), who suggested no significant decreasing trend for
OMI TVCD data and inversed NOx emissions after 2010.
The disagreement can be explained by the results of Fig. 5.
Including the low anthropogenic NOx emission regions leads
to underestimates of NOx decreases. Since the area of low
anthropogenic NOx emission regions is larger than high an-
thropogenic NOx emission regions (Table 2), the arithmetic
averaging will lead to a large weighting of rural observations,
which do not reflect anthropogenic NOx emission changes.
Miyazaki et al. (2017) and Jiang et al. (2018) included all
regions in their analyses, but we exclude rural regions. Fig-
ure S9 shows the seasonal variations if the TVCDs over ru-
ral regions are included; the result shows a much lower de-
creasing rate of TVCDs over the CONUS. The much slower
satellite TVCD trends for regions with low NOx emissions
was previously discussed by Zhang et al. (2018). In addition,
Miyazaki et al. (2017) and Jiang et al. (2018) conducted NOx
emission inversions by using the Model for Interdisciplinary
Research on Climate (MIROC)-Chem with a coarse resolu-
tion of 2.8◦× 2.8◦, which was insufficient to separate urban
and rural regions and might distort predicted NO2 TVCDs
and inversed NOx emissions due to nonlinear effects (Valin
et al., 2011; Yu et al., 2016), which is another possible reason
for their finding of flattening NOx emission trends after 2010.

We summarize the decreasing rates of NO2 after the Great
Recession in Table 3. To minimize the effect of the sharp de-
crease and the subsequent recovery, we chose to analyze the
post-2011 period. Table 3 summarizes the results for each
season, while Table 1 gives the averaged annual decreasing
trends. Generally, Tables 1 and 3 confirm the continuous de-
creases in AQS surface observations, satellite NO2 TVCD,
and updated EPA anthropogenic NOx emissions after 2011
as in Fig. 6, but the decreasing rates are lower than the pre-
2011 period. Over the AQS urban sites, the slowdown magni-
tudes are 9 % for AQS surface observations and 20 %–40 %
for satellite NO2 TVCD measurements, which may reflect
in part smaller γ than β values (Table 2). Our estimated
slowdown magnitudes are significantly lower than Lamsal et
al. (2015) and Jiang et al. (2018) (Table 1), which might be
caused by their different data processing methods, such as

Atmos. Chem. Phys., 19, 15339–15352, 2019 www.atmos-chem-phys.net/19/15339/2019/
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Figure 5. Relative annual variations in OMI-QA4ECV NO2
TVCD for different anthropogenic NOx emission groups
based on NEI2011 in each season from 2005 to 2017.
“E >= 64” denotes grid cells with anthropogenic NOx emis-
sions over 64× 1010 molecules cm−2 s−1. “E >= 32” de-
notes grid cells with anthropogenic NOx emissions equal to
or larger than 32× 1010 molecules cm−2 s−1 but less than
64× 1010 molecules cm−2 s−1. “E >= 16” and “E >= 8”
have similar meanings as “E >= 32”. “E < 8” denotes
grid cells with anthropogenic NOx emissions less than
8× 1010 molecules cm−2 s−1. Shading in a lighter color is
added to show the standard deviation of the results; when uncer-
tainty is small due in part to a large number of data points, shading
may not show up.

including AQS sites with incomplete measurement records
(Silvern et al., 2019).

Over the CONUS urban regions, updated EPA anthro-
pogenic NOx emissions show a slowdown of 22 % compared
to 29 %–46 % for three OMI NO2 TVCD products. The dif-
ference is partially due to the β ratio of 2.5± 1.0 at 13:00–
14:00 LT over the CONUS urban regions (Table 2). Satel-
lite NO2 TVCD measurement uncertainties also contribute to
the difference. From 2013 to 2017, GOME-2B NO2 TVCDs
decrease more than OMI products, especially in spring, au-
tumn, and winter (Tables 1 and 3). Finally, trend analyses in
different regions (Fig. 7 and Table S4) indicate that gener-
ally, the Midwest has the least slowdown of the decreasing
rate for urban OMI NO2 TVCD (−14 % on average) after
2011 compared to the Northeast (−30 %), South (−34 %),
and West (−28 %).

The results presented in this study are qualitatively in
agreement with the work by Silvern et al. (2019). The two
studies were independent. Therefore, the foci of the stud-
ies are different despite reaching similar conclusions. While
we focused on understanding the detailed data analysis of
Jiang et al. (2018) and limited the use of model simulation
results so that our results can be compared to the previous Ta
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Figure 6. Relative variations in AQS NO2 surface measurements at
13:00–14:00 LT and 10:00–11:00 LT, updated EPA anthropogenic
NOx emissions, and satellite NO2 TVCD data over the AQS urban
sites (left column) and the CONUS urban regions (right column) for
four seasons. AQS NO2 surface measurements are not included in
the right column. All datasets are scaled by their corresponding val-
ues in 2011 except for GOME-2B. For GOME-2B, we firstly nor-
malized the values in each season to the corresponding 2013 values
and plotted the relative changes from the 2013 EPA point of each
season to make the GOME-2B relative variations comparable to the
other datasets. Shading in a lighter color is added to show the stan-
dard deviation of the results; when uncertainty is small due in part
to a large number of data points, shading may not show up.

study directly, Silvern et al. (2019) relied more on multi-
year model simulations. As a result, Silvern et al. (2019) can
clearly identify the contributions of the NO2 columns by nat-
ural emissions and make use of additional observations such
as nitrate deposition fluxes. They also identified model biases

Figure 7. Pre- and post-2011 OMI NO2 TVCD trends for four sea-
sons in the urban regions of Northeast, Midwest, South, and West.
Black bars denote OMI-QA4ECV NO2 TVCD trends from 2005
to 2011; gray bars denote the corresponding trends during 2011–
2017. Blue bars denote OMI-NASA trends from 2005 to 2011; cyan
bars denote OMI-NASA trends from 2011 to 2016. Red bars de-
note OMI-BEHR trends from 2005 to 2011; pink bars denote OMI-
BEHR trends from 2011 to 2016.

in simulating the trends of NO2 TVCDs by missing natural
emissions in the free troposphere. Our study, on the other
hand, explored the data analysis procedure through which the
trend of anthropogenic emissions can be derived from satel-
lite observations and its limitations.

4 Conclusions

Using model simulations for July 2011, we demonstrate
the nonlinear relationship of NO2 surface concentration and
TVCD with anthropogenic NOx emissions. Over low anthro-
pogenic NOx emission regions, the ratios of anthropogenic
NOx emission changes to the changes in surface concen-
trations (γ ) and TVCDs (β) have very large variations and
β > γ � 1. Therefore, for the same emission changes, sur-
face concentration and TVCD changes are much smaller and
more variable than urban regions, making it difficult to use
the observations to directly infer anthropogenic NOx emis-
sion trends. We find that defining urban regions where an-
thropogenic NOx emissions are > 1011 molecules cm−2 s−1

and using surface and TVCD observations over these regions
can infer the trends that can be compared with the EPA emis-
sion trend estimates.

We evaluate the anthropogenic NOx emission variations
from 2003 to 2017 over the CONUS by using satellite

Atmos. Chem. Phys., 19, 15339–15352, 2019 www.atmos-chem-phys.net/19/15339/2019/
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NO2 TVCD products from GOME-2B, SCIAMACHY, OMI-
QA4ECV, OMI-NASA, and OMI-BEHR, over the urban
regions of CONUS. We find broad agreement among the
decreases in AQS NO2 surface observations, satellite NO2
TVCD products, and the EPA anthropogenic NOx emissions
with the CEMS dataset updated. After 2011, they all show
a slowdown of the decreasing rates. Over the AQS urban
sites, NO2 surface concentrations have a slowdown of 9 %
and OMI products show a slowdown of 20 %–40 %. Over
the CONUS urban regions, OMI TVCD products indicate
a slowdown of 29 %–46 %, and the updated EPA anthro-
pogenic NOx emissions have a slowdown of 22 %. The dif-
ferent slowdown magnitudes between OMI TVCD products
and the other two datasets may be caused by the nonlinear
response of TVCD to anthropogenic emissions and the un-
certainties of satellite measurements (e.g., GOME-2B TVCD
data show a larger decreasing trend than OMI products from
2013 to 2017).

We did not find observation evidence supporting the notion
that anthropogenic NOx emissions have not been decreas-
ing after the Great Recession. In future studies, we recom-
mend that the nonlinear relationships of NOx emissions with
NO2 TVCD and surface concentration be carefully evaluated
when applying satellite and surface measurements to infer
the changes in anthropogenic NOx emissions.

Data availability. The NCEP CFSv2 products are from
https://doi.org/10.5065/D61C1TXF (last access: 10 March 2015).
The EPA AQS hourly surface NO2 measurements are downloaded
from https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
(last access: 27 June 2018; EPA, 2018a). QA4ECV 1.1 NO2
VCD products (OMI-QA4ECV, GOME-2A, and SCIAMACHY)
are from http://temis.nl/qa4ecv/no2col/data/ (last access: 20
August 2018; ESA, 2017). GOME-2B NO2 VCD products are
from http://www.temis.nl/airpollution/no2col/no2colgome2b.php
(last access: 20 August 2018; ESA, 2013). OMI-BEHR and
OMI-NASA archives are from http://behr.cchem.berkeley.edu/
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