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• Emission sources of air pollution are
attributed by means of the 4-dimen-
sional variational approach.

• Distributions of pollution sources are ex-
amined to be useful in distributing moni-
toring sites.

• Accurate air pollution forecast is available
with effective deployment of the moni-
toring sites.

• Air pollution predictability is limited by
the impacts of observational network.
⁎ Correspondence to: S. Zhang, The College of Oceanic a
⁎⁎ Correspondence to: Y. Gao, Key Laboratory of Marine
Education, Ocean University of China, Qingdao 266100, Ch

E-mail addresses: szhang@ouc.edu.cn (S. Zhang), yang

https://doi.org/10.1016/j.scitotenv.2021.145580
0048-9697/© 2021 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 31 August 2020
Received in revised form 13 January 2021
Accepted 28 January 2021
Available online 5 February 2021

Editor: Pingqing Fu

Keywords:
Transport model
Optimal observational network
Adjoint sensitivity
Air pollution prediction
Optimization algorithm
Attributing sources of air pollution events by deploying an efficient observational network is an important and
interesting problem in air quality control and forecast studies, but it is very challenging. In order to estimate
the sensitivities of pollution events to emission sources, a comprehensive framework is built based on a horizon-
tal 2-dimensional transport model and its adjoint in solving this problem. In an analysis of an idealized air pollu-
tion event of PM2.5 over the region of North China, an objective function is defined to optimally estimate the
initial concentrations and emission sources through a series of minimization procedures. Results by means of
the 4-dimensional variational approach show that, with the optimal initial conditions and emission sources,
the model can successfully forecast the pollution event in a few days. The optimal observing network based on
sensitivity analysis takes only one third of the cost but greatly retains predictability skill compared to the full-
grid observing system, while nearly no predictability skill is detectable if the same number of observational
sites is randomly deployed. We evaluate air pollution predictability in the point of focusing on to what degree
the root mean square errors between the modeled concentration and the targeted air pollution are limited by
the optimal observational network. Results show that air pollution predictability in association with the optimal
observational network is limited in the time scales about 6 days. With the high efficiency and in an economic
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fashion, such a sensitivity-based optimal observing system holds promise for accurately predicting an air pollu-
tion event in the targeted area once the adjoint and variational procedure of a realistic atmospheremodel includ-
ing transport and chemical processes is performed.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Since the industry revolution from 19th century, air pollution has
been considered as a major threat to human health based on the
World Health Organization (WHO) report (Venkatesan, 2016) and pre-
vious studies (Kampa and Castanas, 2008; Sweileh et al., 2018). Nowa-
days, with the development of numerical technique, air pollution
forecast becomes the strong support of public decision making in air
quality control. The accuracy of air pollution forecast is significantly af-
fected by the initial conditions, which is also well known as the first-
kind problem of predictability in weather forecast and related subjects
(Mu and Wang, 2001). As a result, accurate air pollution forecast re-
quires efficient information offered in advance, in which initial concen-
trations and emission sources play a key role (Henry, 2008; Sharma,
2009) and the effective deployment of monitoring sites is the first
step (Joly and Peuch, 2012).

A number of studies have tried to track air pollution sources using
different techniques. The trajectory clustering method (Wang et al.,
2009) identifies potential emission sources based on the back trajecto-
ries of air mass with statistical analysis, but it may lose information in
those areas without observations. Source attribution based on
receptor-based models provides emission estimates, such as Positive
Matrix Factorization (PMF) (Lee et al., 1999; Song et al., 2006) or Chem-
ical Mass Balance (CMB) (Marmur et al., 2005), and three dimensional
chemical transport models, i.e., tagged species method via the Ozone
and Particle Source Apportionment Technology (OSAT/PSAT) within
the Comprehensive Air Quality Model with Extensions (CAMx)
(Karamchandani et al., 2017; Wagstrom et al., 2008) or the Integrated
Source Apportionment Method (ISAM) within the Community
Multiscale Air Quality Modeling (CMAQ) (Gao et al., 2020; Kwok et al.,
2013), but source attribution using these methods is in local and only
a single emission source or a limited number of predefined sources
can be tracked.

In contrast, the adjoint technique is considered as an efficient tool to
track multiple emission sources simultaneously with no need to set the
predefined regions (Liu et al., 2007; Zhu and Zeng, 2002), and under-
stand howmodeled pollutant concentrations varywith emissions or re-
action rates (Menut et al., 2000). It is in particular efficient and useful to
tackle the backward problems with a limited number of outputs while
the number of inputs is relatively large (Cacuci, 1981; Daescu and
Carmichael, 2003; Hakami et al., 2006). Pudykiewicz (1998) firstly de-
veloped the adjoint model of a tracer transport equation to attribute
the emission sources and then applied it to monitor the impacts of nu-
clear testing. An adaptive location method (Daescu and Carmichael,
2003) was proposed for the observational system in a general frame-
work with adjoint sensitivity analyses. Though the adjoint method has
been applied in the previous studies with a major focus on tackling
the emission sources or improving the original emission inventory,
i.e., GEOS-Chem (Zhang et al., 2016), WRF-Chem (Chen et al., 2019;
Mizzi et al., 2016), CMAQ (Hakami et al., 2007; Park et al., 2018) and
GRAPES–CUACE (An et al., 2016), apparently, there is aweakknowledge
about the influences of attributed pollution sources along the pathway
of pollutants on air pollution forecasts, which makes the distribution
of monitoring sites still challenging.

The monitoring sites can be of different characteristics with regard
to various air pollutants and the geographical area, and the observation
stations are usually classified tomake up observational networks for dif-
ferent objectives (Spangl et al., 2007). Flemming et al. (2005) illustrated
that the classifications of air quality monitoring sites is linked either to
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an assessment of emissions or to the measurement of concentrations,
and they showed the results of the concentration-based approach for
observed multi-pollutants in Germany. Joly and Peuch (2012)
overviewed the concentration dataset in studies before and then devel-
oped amethod of linear discriminant analysis to classifymonitoring sta-
tions in rural and urban areas. Most of the current studies (Flemming
et al., 2005; Joly and Peuch, 2012; Kracht and Gerboles, 2019; Kracht
et al., 2017; Spangl et al., 2007) focus on analysis of the concentration
observations for the objective classification of monitoring stations, but
the relevant evidence from the emission-based approach is rarely
found in the literature.

Here, we use the 4-dimensional variational (4D-Var) approach to
optimally attribute the sources of air pollution, aiming at providing a
general framework with the effects of emission sources for distributing
sites of an optimal observational network. Clearly illustrated in a 2-
dimensional (2D) transport model framework, we show that monitor-
ing sites of the observational network based on adjoint sensitivity anal-
ysis can offer optimal initial conditions to accurate prediction of air
pollution with a minimum cost of monitoring sites. As an exploratory
work, the study is not aiming to developing delicate classification
schemes for the representativeness assessment of monitoring stations,
which involves in too complex constraints beyond the ability of the cur-
rent simple 2D framework. Therefore, the objective of the designed net-
work only takes a simplest case, i.e., only considering the cost of
network deployment.

In what follows, we first describe the methodology in Section 2, in-
cluding the general description of optimally attributing sources in 4D-
Var approach and four experimental designs. In Section3, a 2D transport
model and its adjoint are developed as a framework for illustration, and
a minimization algorithm is adopted and examined. Sensitivity analysis
is given in Section 4.1. The optimal initial concentrations and emission
sources are analyzed in Section 4.2. In Section 4.3, the observational net-
work based on adjoint sensitivity is designed, and the efficiency and cost
are evaluated. We discuss the impacts of the optimal observational net-
work on the air pollution predictability in Section 4.4. The summary and
discussions are given in Section 5.
2. Methodology

2.1. Optimally attributing sources of air pollution in 4D-Var

Given a pollution event at the current time T (Fig. 1(a)), if the
event is only resulted from the transport process of pollution
sources, two questions have to be addressed for the prediction
issue: (1) What is the possible pathway of the pollution sources in
the past time period of (0, T) resulting in the event (Fig. 1(b))?
(2) If an accurate prediction is pursued at the time 0, what kind of
observing network (in terms of locations and coverage density) to
measure initial concentrations and emissions (that could be persis-
tent until T) is adequate (Fig. 1(cd))?

These two questions can be answered with 4D-Var approach.
Given an atmosphere model including transport and chemical reac-
tion processes ∂c

∂t ¼ M sð Þ, where the model state vector s includes
the model dynamical state fields and the traceable pollutant being
transported, c is the pollutant concentration. Define a cost function
J to measure the strength of the pollution, i.e., the integral of the pol-
lutants on the domain Ω: J = ∭ f(cT(x,y, z))dxdydz, where cT is the
model pollutant concentration distribution at the current time.



Fig. 1. Conceptual illustration of optimally attributing sources of air pollution (orange oval) under the background of prevailing westerly wind (arrow), around the target area over the
North of China centered at Beijing (denoted by the blue dot), China. a) Occurrence of an air pollution event in the North of China. b) Possible influencing pathway of air pollution to
the target area. c) The locations and strength of the sources (red-shaded) from the solution of theminimization problem in several days ago. d) Same as c), but added with the estimated
observational sites (asterisks). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The answer to the first question is equivalent to what the contribu-
tive (sensitive) areas are for J of the pollutant sources in the past time
periods. That is saying, we want to solve the first-order derivatives of J
with respect to emission, i.e., ∇E 0

J, where ∇ is the gradient notation.
This can be solved by the adjoint model of the transport model inte-

grated backward in time from T to 0, denoted as − ∂bδc
∂t ¼ ∂M

∂s

� �Tcδs, in
(T, 0), as illustrated in the lower part of Fig. A in Supplementary mate-
rials marked as “Adjoint model, integrating backward in time.”

The answer to the second question is a minimization problem:what
are the exact distributions of initial concentrations and emissions lead-
ing to the occurrence of the pollution event at time T? In other words,
we would like to estimate the optimal concentration c0 and E0 for the
air pollution forecast so that the model concentration cTM will be accu-
rately approached to the air pollution cT at time T. This optimal estimate
can be solved through the minimization procedures shown in Fig. A in
Supplementary materials, in which the following equation is mini-
mized, i.e.,

min
c0, E0

J ¼ ∭Ω
x, y, zð Þ cTM x, y, zð Þ−cT x, y, zð Þ� �2

dxdydz
n o

ð1Þ

with respect to initial concentration c0 and emission E0. The minimiza-
tion is combining the adjoint model with a minimization algorithm.

The minimization is usually implemented by iterations (Fig. A in
Supplementary materials) using the gradients solved from the adjoint
model. In each iteration, an atmosphere model including transport
and chemical reactions model is integrated forward in time to derive
themodel concentration ct at time T and calculate the value of cost func-
tion J. Then the adjoint model is integrated backward in time to derive
the gradient of J with respect to initial concentrations and emissions,
i.e., ∇c0

J and ∇E0
J. Finally, a minimization algorithm is adopted to esti-

mate the optimally initial concentrations and emissions using the cost
function and the associated gradients as the minimization converges
when the norm of gradient of the cost function becomes small enough.
3

2.2. Experimental design

To gain a clear understanding of optimally attributing sources of a
pollution event in 4D-Var in this study, we design the following 4 ideal-
ized experimentswhich simulate the pollution prediction problem from
the simplest to the relatively realistic scenarios.

Exp1. An air pollution event with a uniform PM2.5 concentration of
150 μg m−3, which is normally considered as the level of severe pollu-
tion based on air quality index (AQI) (HJ 633—2012; (MEPPRC,
2012)), was assumed to occur over the region of North China (the
area used to define objective function in Section 3.3). The initial concen-
trationswith the value of zero are applied, and the pollution event is the
consequence of the emission at the initial time only (i.e., 5 days ago). To
clearly demonstrate the development of methodology, here we only
consider idealized air pollution configuration. We will give discussions
about the applications in observations and predictions of real pollution
situations at the result analysis in Section 5.

Exp2. The same as Exp1, but the emission is assumed to be persistent
for a while (in the first 24 h, for instance).

Exp3. The same as Exp2, but the emission is assumed to be persistent
until the pollution event occurs.

Exp4. The same as Exp3, but the pollutant has an initial distribution,
i.e., the pollution event is the consequence of a combination of the per-
sistent emission and initial concentrations. This is the closest case to a
real prediction problem. Using this experimental setting and 4D-Var
procedure,wewill construct and examine the optimal observing system
in the pollution prediction, and complete the study of the optimally at-
tributing sources of air pollution in 4D-Var.

Once the atmospheremodel including pollution evolution processes
(transport and chemical reactions, for instance) and its adjoint are set,
with the approaches described in Section 2.1 (as illustrated in Fig. A in
Supplementarymaterials) to Exp1, we can derive the distribution of op-
timal initial emission that causes the targeted pollution event ahead a
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few days (5 days, for instance). Applying the approach to Exp2 (Exp3),
we can derive the optimal distribution of the pollution emission that is
discharged persistently for a while in the beginning of the forecast pe-
riod (the whole forecast period). When we apply the 4D-Var approach
to Exp4, we can derive the optimal distributions and strength for both
the persistent emission source and initial pollutant concentration.

Next, we develop a 2-dimensional transport model and its adjoint,
andwith the aid of aminimization algorithm to implement themethod-
ology framework we described above and investigate the issue of opti-
mizing pollution predictions.

3. A 2D transport model, adjoint and minimization

3.1. Development of a 2D transport model and its tangent linear

a. The 2D transport model

To implement the 4D-Var approach of optimally-attributing emis-
sion source for a pollution event described in Section 2.1, we develop
a simple 2D transportmodel that delineates the processes including ad-
vection, diffusion, emission, and deposition. The chemical reactions are
not considered in this study for simplicity. The concentration variations
of air pollutants can be described by the nonlinear partial differential
equation (Daescu and Carmichael, 2003) as Eq. (2).

∂
∂t

c ¼ −∇ � ucð Þ þ ∇ � ρK � ∇ c
ρ

� �� 	
þ E−D ð2Þ

In a spatial domain horizontally x = (x,y) belongs to domain Ω in
Euclidean space R2. With the time interval of [t0, tn], the concentration
c(tk,x) at time tk (k = 0, …, n) is solved by wind field u, air density ρ,
emissions source E and deposition processD. Note that only dry deposi-
tion is considered in this study. The operator∇=(∂/∂x,∂/∂y) represents
the gradient inmathematics. Diffusion coefficientK is 1m2 s−1 in the 2D
transport processwhich is reasonably less than the values of 3–6m2 s−1

usually used in urban areas (Pérez-Roa et al., 2006). We adopt a global
atmosphere circulation model to drive the transport of pollutant, of
which the west-eastward boundary condition is periodic along the lati-
tude circles, and the south-northward boundary condition is the aver-
aged values of the calculations at the latitudes nearest the poles. The
initial condition used in Eq. (2) is set as Eq. (3)

c t0, xð Þ ¼ c0 xð Þ ð3Þ

The deposition flux can be estimated by the product of the pollutant
concentration and deposition velocity rate, which is set as a relatively
low value of 1 × 10−4 m/s based on Zhao et al. (2019). The wind field
u = (u,v) is provided by a global barotropic spectral (GBS) model
(Qiao et al., 2005), and the horizontal velocity u and v are thederivatives
of the geostrophic stream function ψ which is applied with vertically 1
layer for the troposphere, shown in Eq. (4), whereas ψ is solved in the
Eq. (5). The initial condition for GBS model is the stream function,
which is calculated based on 500 hPa wind vector u and v from the re-
analysis of ERA5 hourly reanalysis data (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5: last access, July 17, 2020)
of January 2020.

u ¼ ∂ψ
∂y

, v ¼ −
∂ψ
∂x

ð4Þ

∂
∂t

∇2−γ2
� �

ψþ J ψ,∇2ψ
� �

þ β
∂ψ
∂x

þ J ψ, h0
 � ¼ f c, ð5Þ

where β represents the change rate of the Coriolis parameter f0 at a cer-
tain latitude, fc is the vorticity forcing and h′=(f0/H0)hterrain reflects the
effect of topography determined by f0, the average atmosphere equiva-
lent depthH0 (about 12,000m indepths of the troposphere), and topog-
raphy hterrain. The Cressmanparameterγ2= f2/(gH0) is a corrector of the
4

systematical error in the barotropic atmosphere model where f repre-
sents the planetary vorticity (Rinne and Järvinen, 1993).

A leap-frog scheme is used in coding the main iteration module of
the 2D transport model, which is assisted by a normal forward scheme
for the start module. Gaussian grids system is popularly used and it is
with a spatial resolution of 5.625° × 3.333° in longitude and latitude
for GBS model and transport model in this research. Temporal resolu-
tion is 30 min (0.5 h). It is applied with vertically 1 layer for the tropo-
sphere with about 12,000 m in depths.

b. The tangent linear model (TLM)

Before constructing an adjoint model, it is necessary to derive the
corresponding tangent linear model (Errico, 1997). Let p denote the
vector of parameters in the transport model which has no correlation
with the model state c, TLM, as the Taylor expansion of the nonlinear
equation (Eq. (2)) and the first order approximation of the concentra-
tion perturbation c′, can be written as below (Eqs. (6) and (7)) based
on Eqs. (18) and (19) in Daescu and Carmichael (2003).

dc0

dt
¼ M0

c c,pð Þ � c0 þM0
p c,pð Þ � p0 ð6Þ

c0 t0, xð Þ ¼ c00 xð Þ ð7Þ

whereMc′(c,p) andMp′(c,p) are the Jacobian matrices ofMwith respect
to c or p, respectively, and the Lagrangian differential operator in Eq. (2)
has been expressed in the form of Eulerian differential operator in Eq. (6).

c. Evaluation of TLM

To evaluate the consistency between the tangent linear model and
nonlinear transport model in computing a small perturbation, the non-
linear transport model was runwith two cases, one with the initial con-
ditions and the other with the initial conditions plus a small
perturbation. The difference between these two cases is used to be di-
vided by the TLM resultswith the same initial perturbationαδs, referred
to as Rtan(α) with themagnitude of α at the same order as the perturba-
tion. Based on the illustration of Zhang et al. (2001) for tangent linear
test, Eq. (8) can be derived.

lim
α!0

Rtan αð Þ ¼ lim
α!0

‖M sþ αδsð Þ−M sð Þ‖
‖αM0δs‖

¼ 1 ð8Þ

Here s = (cT,pT)T is the vector of all parameters in the transport
model and M′ = ∂M/∂s represents the tangent linear operator of the
transportmodel, and ‖·‖ denotes a l2 Euclidean norm. Setting a horizon-
tal point emission which holds a constant value of 5000 μg m−2 s−1,
i.e., the emitted strength is 0.416 μg m−3 s−1 when divided by the
depth of 12,000 m vertically in one atmosphere column, we produce
the solid line of Fig. B in Supplementary materials by performing inte-
grations of the nonlinear model and tangent model described above.

With α tending to be infinitesimal or zero, the perturbations com-
puted by nonlinear transport model and tangent linear model should
be comparable, indicating a value of 1 might be achieved for Rtan(α).
The accuracy was quantified based on the metric of log(Rtan(α) − 1)
(solid line in Fig. B in Supplementary materials), and it shows that
when the magnitude's order α of a small perturbation decreases from
10−1 to 10−16, log(Rtan(α) − 1) starts to decrease from −0.8 until
−6.5, indicating that the tangent linear increment is approaching to
the nonlinear increment. Then log(Rtan(α) − 1) drops very slowly as α
ranges from 10−6 to 10−10, while it slightly increases when α continues
to decrease. The increase of the logarithm value says the model errors
derived with the magnitude's order α become comparable to the incre-
ment in magnitude. The solid line of Fig. B in Supplementary materials
ensures the correctness of Eq. (8) for the tangent linear model, which
gets it ready for the development of the adjoint model.

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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3.2. Adjoint model and sensitivity

The adjointmodel is needed to derive the sensitivity information of a
pollution event governed by a nonlinear dynamical system. The sensi-
tivity information is represented by the first-order derivatives (or called
gradient) of a defined objective functional that measures the pollution
with respect to some pollution-associated control variables. Since the
gradient represents the descending direction of the objective functional,
it serves as the key parameter in implementing minimization. Here we
develop the adjoint of the 2D transport model described in last section
to estimate the source of pollution (Pudykiewicz, 1998). Similar as the
concept of an adjoint operator for pollutant's transport process
(Daescu and Carmichael, 2003), we use inner product associated with
the transportmodel (Eqs. (2) to (5)) to express the adjoint problem. De-
note ⟨·,·⟩ as the inner product, a cost function J is of the form

J ¼ ⟨wc, c⟩ ð9Þ

where w is a weights' vector independent on the model state c. Corre-
sponding to a perturbation of input parameters, one can get a perturba-
tion form of the cost function with respect to a perturbed c′ (denoting
the derivative of J with respect to c) as

J0 ¼ ⟨w, c0⟩ ð10Þ

Anadjoint variableλ(t)maybe introduced andmultiplied by Eq. (6),
then Eq. (11) can be derived through the integration on [t0, tn].Z tn

t0
⟨λ, dc0

dt
⟩dt ¼

Z tn

t0
⟨M0

c
T c,pð Þλ, c0⟩þ ⟨M0

p
T c,pð Þλ,p0⟩dt ð11Þ

Integrated by parts and arrange the terms in Eq. (11), it is referred
that

⟨λ，c0⟩jtnt0 ¼
Z tn

t0
⟨M0

c
T c,pð Þλþ dλ

dt
, c0⟩þ ⟨M0

p
T c,pð Þλ,p0⟩dt ð12Þ

The adjoint problem of transport model Eq. (2) is given by

dλ
dt

¼ −M0
c
T c,pð Þλ ð13Þ

with λ(tk) =w at themoment of tk in the time integration. As long as a
vector λ(tk) in mathematics satisfies Eq. (13), it can be inferred from
Eqs. (10), (12) and (13),

J0 ¼ ⟨λ t0ð Þ, c00⟩þ
Z tk

t0
⟨M0

p
T c,pð Þλ,p0⟩dt ð14Þ

Therefore, the sensitivities associated with the cost function can be
displayed in Eqs. (15) and (16).

∇c0 J ¼ λ t0ð Þ ð15Þ

∇pJ ¼ M0
p
T c,pð Þλ ð16Þ

where ∇c0(·) and ∇p(·) are used to express the first-order derivative
(i.e. the gradient) of J with respect to the control variables c0 and p, or
as the sensitivity of J with respect to c0 and p, respectively. In addition
to serving as the decent direction in a minimization algorithm, the gra-
dient carrying sensitivity information is also quite useful to understand
which area (sensitive area) is important for the target pollution event.
More discussions of sensitivity analysis for transporting air pollution
are presented in Section 4.

The adjoint model is coded adopting themethod of adjoint of “finite
difference” (Giering and Kaminski, 1998; Sirkes and Tziperman, 1997).
The adjoint of the transportmodel is coded through transposing all sub-
routines line-by-line in their tangent linear model. In forward time
5

integration, we perform M = M1M2…Mtn−1Mtnto derive variables of
TLM such as ctn′=Mc0′=M1M2…Mtn−1Mtnc0′, while its transpose be-
comes M⁎ ¼ M⁎

tnM
⁎
tn−1 . . .M

⁎
2M

⁎
1 and variables in adjoint model are

integrated backward in time. Thus, the adjoint problem of transport
model in an inner product form such as ⟨Mc′,Mc′⟩ = ⟨c′,M ∗Mc′⟩ will be
checked by the ratio Radj = ⟨c′(tn),c′(tn)⟩/⟨λ(t0),c0′⟩. Using the leap-
frog scheme, the magnitude's order of the ratio Radj agrees to 15 preci-
sion in 240 hours integration (Table A in Supplementary materials) so
as to guarantee the accuracy of the adjoint model, but a gradient test
is necessary before the gradient is applied to a minimization algorithm,
which will be discussed more details next.

3.3. Gradient test and minimization algorithm

a. Gradient test

In order to ensure that the results derived from an adjoint model
represent the sensitivity of the corresponding transport model, a gradi-
ent test is necessary (Giering and Kaminski, 1998; Janisková and Lopez,
2013). Based on Giering and Kaminski (1998), the cost function J de-
scribed in Eq. (10) can be further written in Eq. (18) measuring the dis-
tance between themodel forecast and observations, and the gradient of
J can be written in Eq. (19).

J ¼ 0:5 �∑Ω
x¼ x,yð Þ c s, x, tð Þ−cobs xð Þ½ �T c s, x, tð Þ−cobs xð Þ½ � ð18Þ

where c(s,x, t) is the modeled concentration derived from variables s at
the moment of t, and cobs(x) is the observed concentrations, and x be-
longs to grid points in the target domain Ω.

∇pJ ¼ M⁎ c s, x, tð Þ−cobs xð Þ½ � ð19Þ

For each time step, based on Eq. (19), the output c(s,x, t) from the
transport model is used as the input of adjoint model for the backward
calculation.

Starting from a single point emission with an arbitrary value, we in-
tegrate the transportmodel (Eqs. (2) and (5)) forward in time. Applying
Eq. (18) to the target area of the pollution event, theNorth of China cen-
tered at Beijing in this study as 32°N–52°N in latitude, 103.25°E–136°E
in longitude, we compute the cost function J. Following the procedure
shown in Fig. A in Supplementary materials, using the first-order deriv-
ative of J with respect to the pollutant concentration in the pollution
event over the target domain as the input of the adjoint, we integrate
the adjoint model backward in time until the initial time. The output
of adjointmodel is the gradient of Jwith respect to initial concentrations
and emissions. A gradient test procedure is used to ensure that the gra-
dient of cost function calculated from the adjoint model is correct.

Similar to the tangent linear test expressed by Eq. (8), a small pertur-
bation αδs (α is themagnitude controller of the perturbation) is applied
to perform the gradient test based on Zhang et al. (2001). We compare
the increments computed from integrations of nonlinearmodel and the
adjoint-derived gradient combined with the small perturbation. The
nonlinear transport model is integrated twice, one with the control ini-
tial conditions s and the other with the perturbed initial conditions
s + αδs. A ratio is defined as the norm of the difference between two
nonlinearmodel integrations divided by the normof adjoint-derived in-
crements, referred to as Rgrd(α),

lim
α!0

Rgrd αð Þ ¼ lim
α!0

‖J sþ αδs½ �−J s½ �‖
‖∇sJ � αδs‖ ¼ 1, ð20Þ

where J[·] denotes that the operator of cost function from the nonlinear
model. Especially, we evaluate the gradient of cost function to emission
source E0, and the perturbation seriesαδE0 to produce the dashed line of
Fig. B in Supplementary materials. With α ranges from 10−1 to 10−15,
the value of log(Rgrd(α)− 1) starts to decrease to−7, and then increase
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when α continues to decrease. The dashed line of Fig. B in Supplemen-
tary materials proves the correctness of the adjoint-derived gradient
so that the system is ready to do the minimization.

b. Minimization algorithm

Taking Eq. (18) as an objective function (i.e. cost function), the opti-
mizationwith respect to the variable vector s can be reached through an
efficient minimization algorithm, the limited memory quasi-Newton
line searchmethod, which is characterized by fast convergence and cal-
culation in dealingwith the linear equations (Liu andNocedal, 1989). As
shown in Fig. A in Supplementarymaterials, in each iteration of themin-
imization approach, the transportmodel is first used to calculate the ob-
jective function, followed by the adjointmodel integration to obtain the
gradient, and the last step is to retrieve theminimized results through a
series of optimization search procedures. The gradient test performed in
the last section gives us sufficient confidence to apply the transport
model and its adjoint to the minimization procedure.

Applying the minimization algorithm to the four experiments Exp1,
Exp2, Exp3 and Exp4 described in Section 2.2, we obtain the behaviors
of the normalized (divided by the value of the first iteration) cost func-
tion and norm of the gradient to emission in the space of iteration num-
ber in Fig. C in Supplementary materials. Although there are a few
differences in local curves of the cost function and corresponding gradi-
ent norm, the trends of cost function values appear generally decreasing
and all start to converge after 30 iterationsduring theminimization pro-
cess (Fig. C(a–d) in Supplementary materials). At the same time, the
curve trend of gradient norm for Exp4 converges (in 34 iterations)
faster than Exp3 (in 50 iterations), while it converges faster for Exp3
than Exp2 (in 80 iterations). The convergence of gradient norm might
be controlled by the dynamics of the transport process, in which more
complex and realistic emission conditions are considered in Exp4 than
Exp1, 2, and 3. Besides, in Exp2, Exp3, and Exp4 (Fig. C(b–d) in Supple-
mentary materials), the first 30 iterationsmake the cost function (blue)
and the gradient (red) reduced over 99% and 95% respectively, but in
Exp1, the cost function and the gradient decrease by 95% and 75%
(Fig. C(a) in Supplementary materials) due to a much more suitable
scale in minimization not found in our experiments. The cost function
and its gradient finally maintain a stable level when the minimization
reaches the convergence.

4. Optimization of initial conditions, emissions, and observational
network

4.1. Sensitivity analyses

Sensitivities (i.e., the first-order derivatives, or called gradient) carry
the information of how the targeted air pollution responds to variations
of some pollution-associated control variables (previous pollutant con-
centrations and emissions, for instance). In this section, in order to pre-
pare for the optimization process of attributing emission source, we
perform sensitivity analyses for Exp1–4 as described in Section 2.2.
With the 2D transport model and its adjoint developed in Section 3,
the sensitivities to emission sources are calculated. Theminimization al-
gorithm has been testedwith respect to the air pollution event targeted
to the North China ahead a few days (we test 5 days in this study) in
Section 3.3b. Herewe show the derived sensitivity distributionswith re-
spect to emission source in the converged iteration (110th iteration for
all cases) in the minimization process (Fig. D in Supplementary mate-
rials). In general, a positive sensitivity in space means that the increas-
ing emission in such an area enhances the targeted air pollution, while
a negative sensitivity represents the sensitive area that has a
contribution to the increasing deviation of a model concentration from
the concentration of the air pollution event over the targeted domain.
The minimization starts from the first guess of initial concentrations
and emissions being zero. As shown in Fig. D in Supplementary
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materials, when the minimization comes to converging, in all Exp1–4,
the consistentdistributionof theconvergent sensitivities (∇E0J|E0=Eopt=
M ∗[copt − cobs(x)]) is observed as positive values in the upstream and
nearby. This suggests that possible influencing pathways of emission
source might be constrained by the same dynamical mechanism of
transport to the targeted area of air pollution event over the North
China domain for Exp1–4. It's worth to note that idealized air pollution
events are used for adjoint sensitivity analysis in this part as well as the
development and analyses in Sections 4.2, 4.3 and 4.4 with this 2D
transport model which is driven by a simple barotropic circulation
model at the 500hpa isobaric surface. It's clear that although our ulti-
mate goal of developing this methodology is for real air pollution pre-
diction and control, the current 2D transport model needs to be
upgraded to handle 3D transport and complex processes such as diffu-
sion and chemistry etc. Applications in the real pollution control will
be discussed more in Section 4.3 when the optimal observational net-
work is analyzed.

With the sensitivities calculated in the converged iteration, the opti-
mization of emissions (and optimal initial concentrations for Exp4) can
be obtained and then cause the targeted air pollution over the North
China domain after transport. Next, we will further discuss the details
of the impact of optimal emission and optimal initial concentrations.

4.2. Optimized estimate of initial conditions of pollutant concentrations and
emissions

Optimal initial concentrations and emissions are estimated by the
minimization applied to Exp4, while applying minimization to Exp1–3
only optimal emission can be estimated. In this section, we focus on
the results of Exp4 and analyze the impact of optimal initial concentra-
tions and emissions on the target pollution event. Based on the PM2.5

concentration in the air pollution event, the cost function is calculated,
and the optimal initial concentrations and emissions are derived
through the minimization algorithm as implemented by the iterative
procedure in the illustration of Fig. A in Supplementary materials and
the convergence is shown in Fig. C(d) in Supplementary materials. The
distributions of optimally estimated initial concentrations and emis-
sions are shown in Fig. 2. Presumably in the real world the areas with
high emission might suffer high concentration of air pollutants. On the
one hand, the underlying mechanism of the similarity is primarily at-
tributable to the same dynamics of transport. On the other hand, the
much lower initial condition and emission over the pollution area com-
pared to the upwind region occur because of the lack of chemical reac-
tions during transport process. It is admitted that the spatial
distributions of the emissionmay yield large differences once the chem-
ical reactions are taken into consideration. Nevertheless, the concept of
the adjoint sensitivity still holds.

Driven by the optimized initial conditions and emissions shown in
Fig. 2, the forward transport model is then integrated continuously for
five-day (120h) (assumingpersistent emission), and the timeevolution
of PM2.5 concentration for day 0–5 is shown in Fig. 3(a–f). Clearly,
starting from the initial condition depicted in Fig. 3(a), the westerly
wind drives the initial air pollutants as well as the emission to transport
and accumulate eastward. At the end of five day (120 h) shown in
Fig. 3(f), the concentration over the North of China (inside the red
square) is used to compare to the preassigned air pollution event with
PM2.5 concentrations > 150 μg m−3. The mean PM2.5 concentration is
147.4 μg m−3, with the values of mean fractional bias (MFB) and
mean fractional error (MFE) at−2% and 6.5%, respectively, which satis-
fied the benchmark (−60% ≤ MFB ≤ 60%, MFE ≤ 75%) for the MFB and
MFE proposed by Boylan and Russell (2006).

The time evolution of adjoint-derived sensitivity to emission (Fig. 4)
in general displays comparable spatial patterns relative to the concen-
tration derived from the forward transport model using optimal initial
concentrations and emissions particularly during hour 72–120 (com-
pare Figs. 4(d–f) to 3(d–f)). Consistency of the distributions between



Fig. 2. Distributions of the optimal estimated a) initial PM2.5 concentration and b) emission sources for the experiment that considering the emission source is persistent until the air
pollution event occurs and the PM2.5 pollutant has an initial concentration distribution (Exp4). The estimates are for the target air pollution event occurring over the North of China
(red box) in 120 h after the initial time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Time evolution of the spatial distribution of PM2.5 concentration (a-f) simulated by the forward transportmodel at a) initial time, b) 24-hour, c) 48-hour, d) 72-hour, e) 96-hour and
f) 120-hour in Exp4.
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Fig. 4. The same as Fig. 3 but for the sensitivity with respect to the emission derived by integrating the adjoint backward.

Fig. 5. Distributions of observing network based on a) full-grid method, b) top-N method (N set as 100), and c) randomly-sited 100 stations. Dots in each panel represent locations of
observing sites, and colors represent the sensitivity (unit of μg m−3 s) to emission. That N equals to 100 is only for Fig. 5, but exactly, we conduct air pollution forecast using top-N
method with N varying from 1 to 850 (and can be much more till the total number of model grids) for all other experiments.
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sensitivity to emission andmodeled concentration indicates that the ad-
jointmodel can efficiently distinguish the sensitive areas for the air pol-
lution event over the North China, and it performs well ahead of 5 days.
It is observed that spatial patterns of the sensitivity grow values at hours
integrated from 120 to 0 backward, that is because the sensitivities be-
tween two adjacent integrations deliver values and added in the inte-
grations of adjoint model.

4.3. Optimization of the observational network

Targeted to the air pollution event, we have estimated the optimal
initial concentrations and emission sources in Section 4.2. In this sec-
tion, we use the attributed source information to further design optimal
deployment of observational stations in terms of two constraints, the
cost and the effectiveness to form optimal observational network.
Again, we only address an idealized situation in this study for themeth-
odology development, which is readily implemented by aminimization
algorithm. In the real world, an optimal observational network must
consider more complex constraints such as such as monitoring areas
of high population, measuring the maximum concentrations, or detect-
ing the violations from ambient standards. Follow-up studies could im-
plement such important constraints to address real pollution control
issues.

Ideally, regardless of the cost, observations covering the entire
targeted domain should yield the best prediction skills by providing
the most accurate initial condition. In model simulations, this kind of
observational network may include the total grid points of the model,
and it is naturally named as the “full-grid method” as shown in
Fig. 5(a). The sensitivities of the monitoring sites using the full-grid
method distribute identically to the distribution depicted by Fig. 4(a).
However, observational network designed in high cost is not sustain-
able in real application. The observational network cost is an important
constraint in optimization. Here, the cost of observational network is
defined as a linear function to the number of monitoring sites in the
observational network, and we take the full-grid configuration as the
reference for designing of the optimal observational network, in
which the fraction of grids used over the full grids (850 in this case) is
a measure of the cost. Therefore, the essential role of optimizing the
observation sites is to improve the accuracy of air quality forecast with
a reasonable cost in the construction of the observational network.

As in discussions on Fig. 4, the adjoint sensitivity to emission reflects
sensitive areas in contribution to the targeted air pollution, and the loca-
tions with the higher sensitivity in general play larger roles in
Fig. 6.TheRMSEbetween themodeled and observed concentrations over North China alongwit
method with the forecast time of 120 h (black-solid), 168 h (purple), and 240 h (yellow), respe
method, the ensemblemean (wide-solid line) and standarddeviation (shaded) offivemembers
of 120-hour, 168-hour and 240-hour, respectively, driven by the initial conditions and persiste
color in this figure legend, the reader is referred to the web version of this article.)
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constraining the concentration over the designated receptor region.
We then introduce the straight-forward way in distributing the moni-
toring sites about sensitivity,which is referred to as the “top-Nmethod”.
The top-N method means that a number of N most sensitive observa-
tional sites is established to initialize the concentration and set the
emission for the transport model run, and N can be any number from
1 to the maximum as the total number of domain grids. For the demon-
stration purpose, the sites (grids) with the highest 100 (Note that N
equals to 100 is only for Fig. 5, but exactly, we conduct air pollution fore-
casts using top-Nmethod with N varying from 1 to 850 for all other ex-
periments) sensitivity values to emission are selected and shown in
Fig. 5(b). Alternatively, a random method (Fig. 5(c)) was applied to
compare with the top-N method using the same number of sites. Note
that for the random method, the locations of the observation should
be in the Northern Hemisphere as the targeted air pollution is under
the influence of prevailing westerly wind around 35°N–65°N, and in
Fig. 5(c) only a part of the region in Norther Hemisphere is shown and
that's why the sites look like a little less than 100.

Based on the three methods discussed above, a series of numerical
experiments are conducted to evaluate how efficient the initial concen-
trations and emissions observed from observational network is in af-
fecting the air pollution forecast. First, the forecasts with the lead
times of 5 days (120 h), 7 days (168 h), or 10 days (240 h) are simulated
for three methods, respectively. For the full-grid method, the forecasts
are conducted in the same way as that in Section 4.2 (Exp4) because
of every grid point serving as a monitoring site. For the top-N method,
a total of five ensemble members are used. The reason to use ensemble
is the consideration of uncertainties in the initial conditions of the fore-
casts when modeled sensitivity is adopted. The ensemble members de-
rive optimal initial concentrations and emissions via the drift forecast
time of 2 or 4 h prior to or after the designated forecast hours. For exam-
ple, the ensemble members of 5 days forecast use five groups of initial
concentrations and emissions independently, which are optimally esti-
mated ahead 116-hour, 118-hour, 120-hour, 122-hour and 124-hour of
the air pollution event occurring at time T. Likewise, the drift forecast
times are applied to the forecast of 7 days and 10 days in the same
way. For the random method, the ensemble members are used too,
but the members are designed by randomly distributing the sites five
times for a selected number of sites.

RMSEs between the modeled concentrations and the air pollution
event over the domain of North China are calculated. As shown in
Fig. 6, the dashed lines indicate RMSE of 16.97 μg m−3 (black),
26.30 μg m−3 (purple) and 42.79 μg m−3 (yellow) for the forecast of
hnumber of observing stations representingdifferent initial conditions, based on the top-N
ctively, as well as a forecast of 120-hourwith the randommethod (blue-dashed). For each
are shown. The black-, purple-, and yellow-dashed lines represent theRMSE of the forecast
nt emissions using the full-grid observing system. (For interpretation of the references to
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5 days, 7 days and 10 days, respectively, which are driven by the initial
conditions using full-grid method. The increase of RMSE along with the
increment of lead time length in general indicates chaos inmeteorology
(Lorenz, 1963). The top-N method in general shows a decreasing trend
by enlarging the number of monitoring stations, meaning that themore
observational sites taken into optimization, the smaller forecast RMSE is
expected. Taking the forecast of 120 h as an example, relatively sharp
decreases of RMSE are observable at the beginning when the number
of monitoring sites increases, and the slope becomes smaller once the
number increases to a certain value, e.g., 300, with the RMSE reduced
by 116.26 μg/m3 (accounting for 87.35% in comparison with the full
grid method). The random method, nevertheless, shows much higher
RMSE compared to top-N method for the same forecast length (120 h)
even when the number of monitoring sites increase to a relatively
large value such as 500 or more, and the RMSE is reduced by only
25.14 μg/m3 (accounting for 18.89% in comparison with the full gird)
as 300 monitoring sites are used. For the forecast of 120 h, considering
the number of monitoring sites as 300 as a transition point (one in-
creases cost but not apparently improving efficiency) to a large degree,
the time evolution of PM2.5 spatial distribution of the concentration is
shown in Fig. E in Supplementary materials. Compared to the baseline
depicted in Fig. 2(a, b, d, f) for the hour of 0, 24, 72 and 120, the top-N
method clearly generates the stronger eastward propagation (Fig. E
(a–d) in Supplementary materials) compared to random method
(Fig. E(e–h) in Supplementary materials), and at the hour of 120, the
spatial distribution of PM2.5 concentration based on top-N method is
quite comparable to that based on the full-grid method (Fig. E(d) in
Supplementary materials vs. Fig. 3(f)).

Initialized with the modeled data derived from the observational
network based on the top-N method, the air pollution forecasting ex-
periments are performed. We find that the observational network
using the top-N method is with fewer number of monitoring sites, but
it performs in high efficiency for accurate pollution forecast. This kind
of observational network is referred to as the optimal observational net-
work because it provides useful advanced information in the economic
fashion which is due to reasonable distributions of monitoring sites.

4.4. Impacts of the optimal observational network on air pollution
predictability

As the two questions illustrated in Section 2.1, we obtain the path-
way of pollutant transport by solving the sensitivity to emissions from
adjoint model (the answer to the first question) in Section 4.1. We de-
ploy the monitoring sites with respect to sensitivity by minimizing the
cost function of the targeted air pollution (answering the second
Fig. 7. Variations of the averaged concentration over the targeted domain for the 240 h forecast
on the optimal initial concentrations and emissions, respectively. The sites (grids) with the high
by the discussions in Section 4.3. The upper panel uses the optimal initial concentrations and em
tk is 120 h. The medium and bottom panels are the same as the upper panel but they are with
respectively. Dotted lines are the reference concentrations of the PM2.5 air pollution event with
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question of Section 2.1) in Sections 4.2 and 4.3. Nevertheless, the im-
pacts of the optimal observational network on air pollution predictabil-
ity still remain unclear. This part is therefore inspired on the limit of air
pollution predictability with observations from the optimal observa-
tional network using the top-Nmethod based on optimal initial concen-
trations and emissions (Exp4).

We first plot variations of the averaged concentrations of the pollu-
tion forecast over the targeted domain during the forecast time [0, T]
where T is 240 h, and three independent air pollution events described
in Section 4.3 are shown in the panels of Fig. 7. The three air pollution
events are assumed occurring over the North China at the time tk
(∈[0,T]) of 120 h, 168 h, and 240 h, respectively, and the optimal initial
concentrations and emissions are adopted. Apparently in Fig. 7, the air
pollution events are observed as scheduled on time as the peaks at
120 (Fig. 7 upper-thin), 168 (Fig. 7 medium-thin), and 240 h (Fig. 7
bottom-thin) indicating that the reference forecasts are credible based
on optimal initial concentrations and emissions. However, the modeled
concentrations for the forecast of the targeted pollution occurring at the
time 120 h (Fig. 7 upper-thick), which starts with the observations of
the observational network using the top-Nmethod, displaysmore accu-
rately to the reference concentrations (Fig. 7 upper-double-dashed)
than that at the time 168 h (Fig. 7 medium-thick) and 240 h (Fig. 7
bottom-thick).We feel that air pollution predictability acts to be limited
as the lead time length of the targeted pollution forecast increase, for
which the optimal observational network provides the initial conditions
for the forecasts.

In order to have a deep look at the impacts of the optimal observa-
tional network on the limit of air pollution predictability, we investigate
RMSEs in measuring the difference between the modeled concentra-
tions and the reference concentrations of the targeted air pollution.
First, we estimate a series of optimal initial concentrations and emis-
sions with respect to the targeted air pollution event occurring at the
time tk of 12 h, 24 h, …, 228 h, and 240 h during the forecast time [0,
T], i.e., the air pollution events in Fig. 7 are three subcases of this series.
Then, based on observations of the observational networks using the
full-grid method and the top-N method, we use the optimal estimates
of each case in the series, respectively, to derive themodeled concentra-
tions. Therefore, several forecasts with respect to the targeted air pollu-
tion in different lead time lengths (say, 20 subcases) are obtained, and
RMSE of each forecast is calculated at the lead time tk for the targeted
air pollution, respectively. For the demonstration purpose, the sites
(grids) with the highest 300 (inspired by the discussions in
Section 4.3) sensitivity values to emission are selected for the top-N
method in this part. Thus, we have two plots of RMSEs for the targeted
air pollution forecasts with the varying lead time lengths, one is based
s, using the full-gridmethod (thin line), and top-Nmethod (thick line) in each panel based
est 300 sensitivity values to emission are selected for the top-Nmethod, which is inspired
issionswith regard to the targeted air pollution event occurring at the time tk∈ [0,T] where
respect to the pollution event occurring at the time where tk equals to 168 h, and 240 h,
the value of 150 μg m−3.



Fig. 8. RMSEs of air pollution forecasts with the lead time lengths in measuring the difference between the modeled concentrations and the reference concentrations of the targeted air
pollution. Solid line plot represents the results based on the optimal network using the top-N method, and dashed line plot is based on the observational network using the full-grid
method. The sites (grids) with the highest 300 sensitivity values to emission are selected for the top-N method, which is inspired by the discussions in Section 4.3. Note that the
RMSEs are calculated at the scheduled time tk ∈ [0,T] when the targeted air pollution event occurs for the forecasts in each lead time length. For example, the RMSEs of dots at 120 h,
168 h, 240 h are for the peaks of the upper, medium and bottom panels in Fig. 7 at the time tk in 120 h, 168 h, and 240 h, respectively.
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on observations of the observational network using full-grid method
(Fig. 8 dashed) and another using top-N method (Fig. 8 solid).

Though RMSEs described above using the full-gridmethod (which is
equivalent to Exp4) could be in fluctuation for each case (as shown as
the drifts of the dashed line in Fig. 8), which is subject to the different
choices of scales in optimally estimating initial concentrations and
emissions during theminimization process, the difference of RMSEs be-
tween the top-N method and the full-grid method (Fig. 8 solid vs.
dashed) reflects the ability of the optimal observational network
(which is based on sensitivity analysis) to impact the accuracy of predic-
tion results, we refer it to as air pollution predictability here. We find
that the two plots in Fig. 8 are close to each other in the lead time
lengths from 12 h to 84 h indicating that the air pollution predictability
is seized well, but then they slowly split up to a large degree, especially
after 144 h (6 days). The limit of air pollution predictability in the fore-
casts based on the optimal observational network might be concluded
to be in the time scale about 6 days as a result, in which the difference
of RMSEs of the two plots is less than 20 μg m−3 (accounting for 14%
in comparison with 150 μgm−3) and is acceptable in accurate air pollu-
tion forecast.

5. Summary and discussion

Using the framework of 4-dimensional variational approach, the
issue of air pollution predictability based on optimal observational net-
work has been studied. In terms of optimal attribution of the air pollu-
tion sources, the first problem is to make it clear that the possible
transport pathway of the pollution sources in the past timewith respect
to the targeted air pollution region. The answer is to calculate a cost
function with the adjoint sensitivity analysis. The second problem is to
design an observing network to measure initial concentrations and
emissions, so as that accurate prediction will be realized. The answer
is to solve aminimization problem and the general distribution of initial
concentrations and emissions for an air pollution event are obtained.
Four experiments are designed for optimally attributing the sources of
pollution, inwhich pollution scenarios from the simplest to themore re-
alistic are developed and examined. For the purpose of illustration, the
framework of a 2D transport model and its adjoint is developed, and
the transport model is driven by a global barotropic spectral model.
From nonlinear equations to tangent linear derivation, and the adjoint
version, the transport model is critically examined for the forecast
lead time of 120 h. The gradient test ensures the representation of ad-
joint result consistent to the sensitivity of control variables in the
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model. Through an algorithm using the limited memory quasi-
Newton method, the initial conditions of concentrations and emission
sources are optimally estimated by the minimizations.

With the 4D-Var, we propose the optimized observational network
with low cost and in high forecast skills. An idealized air pollution
event of PM2.5 occurring in the North of China is studied using the ad-
joint sensitivity analysis, and the optimal observational network is de-
signed and discussed. Results show that the distribution of air
pollution in forward time integration is well consistent to the adjoint
sensitivity in backward time integration, and it indicates that the mon-
itoring sites of observational network can be efficiently located accord-
ing to the adjoint-derived sensitivity information. Results show that
within some lead time scope, an excellent pollution forecast skill can
be reached with the derived optimal observational network.

This study provides the relevant evidence from the emission-based
approach to design optimal observational network in terms of cost-
effectiveness which can inspire further efforts to resolve real pollution
control problem, but it is preliminary and limited to an idealized
framework.

The target pollutant in the 2D transportmodel is treated for only one
pollutant, PM2.5, which is taken as an example in our current study.
However, pollutants like PM10, CO and black carbons can also be
adopted if the parameters of diffusion and deposition are applied in
Eq. (2). In addition, an observing network is usually designed to observe
multiple pollutants (Spangl et al., 2007), and the current method with
the adjoint sensitivity analysis shall bemodified to design the observing
network for multiple pollutants. First, the cost function is calculated in-
dependently for each pollutant and the procedure will not be affected,
but it is expected that a group of sensitivity fields are to be obtained
for multiple pollutants. As the chemistry reactions are taken into ac-
count, the sensitivities calculation in adjoint model for multiple pollut-
ants may become much more complex. Second, the optimization
procedure of the current method needs to modify for identifying the
area representativeness ofmonitoring sites and gaining a general obser-
vational network for all target pollutants. For example, wemay develop
the Combinatorial Optimization Problem (COP) in the optimization pro-
cedure, in which the Collaborative Optimization (CO) will be applied in
the basis of the currentmethod. The CO-approach couldwork for multi-
objective problems and is widely used for multidisciplinary system de-
signing (Tappeta and Renaud, 1997). In general, to design the observing
network for multiple pollutants, the optimization could be imple-
mented with some additional collaborative constraints and carried out
in the follow-up studies.
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Efforts on practical applications of themethodology in 3D numerical
model are being carried usingCommunityMultiscale Air QualityModel-
ing (CMAQ) and CMAQ-adjoint as well as Weather Research and Fore-
cast (WRF) model, in which the missing chemical processes are
included. Based on such a 3-dimensional atmosphere model that in-
cludes realistic transport dynamics and chemical reactions, with the de-
velopment of minimization procedure and data assimilation scheme, an
advanced pollution forecast system can be established.
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