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Abstract. Numerous devastating air pollution events from wildfire smoke occurred in this century in the western USA,

leading to severe environmental consequences. This study projects future fire emissions in this region under climate
change with a focus on comparing the relative contributions from future changes in burned area, fuel loading and fuel
moisture. The three properties were projected using an empirical fire model, a dynamical global vegetation model and
meteorological conditions respectively. The regional climate change scenarios for the western USA were obtained by

dynamical downscaling of global climate projections. The results show overall increasing wildfires and fuel loading and
decreasing fuel moisture. As a result, fire emissions are projected to increase by ,50% from 2001–2010 to 2050–2059.
The changes in wildfires and fuel loading contribute nearly 75% and 25% of the total fire emission increase, respectively,

but the contribution from fuel moisture change is minimal. The findings suggest that the air pollution events caused by
wildfire smoke could become much more serious in the western USA by the middle of this century, and that it would be
essential to take the future changes in fuel conditions into account to improve the accuracy of fire emission projections.
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Introduction

In contrast to the declining trends of total burned areaworldwide
(Doerr and Santın 2016; Andela et al. 2017), wildfires in the

United States have increased significantly in the past three
decades (Westerling et al. 2006;Marlon et al. 2012; Abatzoglou
and Kolden 2013; Dennison et al. 2014; Westerling 2016;

Holden et al. 2018; Nauslar et al. 2018). More than 70 000

wildfires occur each year in the USA, burning out nearly
7 million acres on average since 2000 (CRS 2020). The western
USA contributed most of the burned area despite having a

smaller number of occurrences than the eastern USA.
Wildfires emit large amounts of pollutant particles and

gases that can significantly affect air quality, human health,

and climate (Crutzen et al. 1979; Andreae and Merlet 2001;
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Liu 2004; Wiedinmyer et al. 2006; Jaffe et al. 2008; Heilman
et al. 2014; Brey and Fischer 2016; Navarro et al. 2016; O’Neill
et al. 2017; O’Dell et al. 2019; Zhao et al. 2019; Zou et al.

2019a; Guan et al. 2020; Xie et al. 2020). Fire emissions
accounted for approximately one-third of the total emissions
of fine particulate matter with a diameter of 2.5 mm or smaller

(PM2.5) in the USA (Urbanski et al. 2011). The fire emissions of
ozone precursors such as volatile organic compounds (VOC)
and NOx can elevate tropospheric O3 level (Jaffe et al. 2013).

PM2.5 and O3 pose severe threats to human health (Liu et al.

2015a; Stowell et al. 2019) and are two of the air pollutants
subject to the US Environmental Protection Agency’s National
Ambient Air Quality Standards (NAAQS). As atmospheric

aerosols, smoke particles affect atmospheric radiations directly
through scattering and absorbing solar radiation and indirectly
through modifying cloud microphysics, which further affects

climate (Liu 2005; Liu et al. 2014a).
Wildfire emissions are determined by burned area, fuel

loading, consumption efficiency, and emission factors (Ottmar

et al. 2008; Urbanski 2014). Many resources are available for
estimating these parameters. Burned area measurements are
available from ground reporting (e.g. the US National Inter-

agency Fire Center historical fire statistics, https://www.nifc.
gov) and satellite remote sensing such as the Global Fire
Emissions Database (GFED) for global fire detections using
MODIS/MIIS (Giglio et al. 2013) and the Monitoring Trends in

Burn Severity (MTBS) for USA large fires using Landsat
(Eidenshink et al. 2007). Fire models, which are necessary for
projecting future fires, are also used to simulate burned areas

based on statistical relationships (Spracklen et al. 2009; Yue
et al. 2013) and vegetation models (Li et al. 2012, 2013; Yang
et al. 2015). Fuel loading can be obtained by fuel systems such as

the Fuel Characteristic Classification System (FCCS) (Ottmar
et al. 2007) and LANDFIRE (Rollins 2009) and LiDAR mea-
surements (Hudak et al. 2016; Bright et al. 2017), and simulated
using dynamical global vegetation models (DGVMs) (Zhang

et al. 2010). Vegetation models are necessary for projecting
future fuel loading conditions. Tools such as CONSUME
(Prichard et al. 2007) provide equations to calculate consump-

tion efficiency based on fuel (type, moisture) and fire (type,
intensity, and phase) properties. Fire emission factors are
available from, for example, the First Order Fire Effects Model

(FOFEM) (Reinhardt et al. 1997; Lutes 2020) based on field and
laboratory measurements (Urbanski 2014; Prichard et al. 2020).
Many datasets such as GFED (Giglio et al. 2013), the Fire

INventory from NCAR (FINN) (Wiedinmyer et al. 2011), and
the Fire Information Reconciled Emissions (CFIRE) inventory
(Larkin et al. 2020) directly provide fire emissions. Fire emis-
sions are also derived from other atmospheric measurements

such as optical depth (Mirzaei et al. 2020) and fire radiative
power (Ichoku et al. 2008).

Climate is one of the natural factors affecting wildfire and

fuels (Littell et al. 2009; Abatzoglou andWilliams 2016; Zhang
and Wang 2016; Hostetler et al. 2018; Williams et al. 2019;
Brown et al. 2020). Wetter weather conditions before a fire

season often produce more-than-normal quantities of fuel to
burn, whereas warmer and drier conditions during a fire season
make it easier to ignite a fire and for the fire to spread. Also, drier
fuels have larger consumption efficiency and therefore larger

emissions. An urgent issue for climate and fire emission rela-
tionships is the impacts of climate change. Climate models have
projected that the greenhouse effect could result in significant

climate change (IPCC 2014), including overall warming and
drying trends in the USA (Cayan et al. 2010; Gao et al. 2014),
and that wildfires would increase accordingly (Brown et al.

2004; Balshi et al. 2009; Flannigan et al. 2009; Littell et al.
2009; Spracklen et al. 2009; Liu et al. 2013; Yue et al. 2013; Liu
et al. 2016; Goss et al. 2020). Fire emissions and the air quality

impacts are likely to increase accordingly (Spracklen et al.

2009; Yue et al. 2013; Ford et al. 2018).
Besides wildfires, vegetation is expected to change remark-

ably under changing climate (Bachelet et al. 2001; Keane et al.

2004; Cary et al. 2006; Corlett and Westcott 2013; Alexander
et al. 2015; Sheehan et al. 2015; Shafer et al. 2015; Holsinger
et al. 2019), which is another contributor to future changes in fire

emissions (McKenzie et al. 2014). Vegetation species could
migrate from one region to another and the biomass of a species
could become larger due to a longer growth season. Both

changes would lead to different fuel loading. In considering
climate-induced vegetation changes, Yue et al. (2013) recog-
nised the need for fire emission projection, though the changes

were not included in calculating future fuel loading because a
DGVM only produced a small vegetation change. Ford et al.

(2018) projected wildfire and vegetation conditions using the
Community Land Model (CLM) DGVM (Oleson et al. 2013)

with fire and carbon emission schemes (Li et al. 2012, 2013).
Because wildfire and vegetation were projected interactively,
the relative contributions of the two properties to wildfire

emissions were not clear. Also, the vegetation species were
not converted to fuel types, making it difficult to apply the field
and laboratory fuel measurements provided in forest manage-

ment tools such as FCCS, CONSUME, and FOFEM.
Fuel moisture is an important factor for fuel consumption

efficiency that is very sensitive to climate and projected to
change remarkably under climate change in the USA and other

world regions (Flannigan et al. 2016; Liu 2017). This could
lead to changes in future consumption efficiency and fire
emissions. However, the relative importance of this property

in comparison with wildfire and fuel loading for future fire
emissions is unclear.

The purpose of this study is to project future wildfire

emissions in the western USA under changing climate and to
understand the relative contributions from future changes in fire,
fuel loading, and fuel moisture. Wildfires, fuel loading, and fuel

moisture were projected using an empirical fire model devel-
oped based on the extreme value theory, a DGVM, and meteo-
rological conditions respectively. Dynamical downscaling of
global climate change projections was used to obtain regional

climate change scenarios for the western USA. It was hypothe-
sised that climate change due to the greenhouse effect would
increase surface temperature, reduce relative humidity, and

intensify drought; although these changes would increase fire
frequency and therefore fire emissions, as predicted in many
previous studies, they would also modify fuel loading and

moisture conditions, which would change the magnitude of
the fire emission increases. The results are expected to provide
information for understanding the uncertainty in projecting
future fire emissions only based on fire projections.
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Methods

Regional climate downscaling

The methods and procedure to project future fire emissions are
illustrated in Fig. 1. Two datasets of regional climate change
scenarios, CESM-WRF (Community Earth System Model,

Weather Research and Forecast) and HadCM-HRM (Hadley
Centre ClimateModel, Hadley RegionalModel), were used. For
the CESM-WRF dataset, we ran a regional meteorological

model, the WRF model (Skamarock et al. 2008), with the
boundary conditions provided by the Coupled Model Inter-
comparison Project – phase 5 (CMIP5) global climate projected

by the National Center for Atmospheric Research (NCAR)’s
CESM version 1 (Hurrell et al. 2013; Monaghan et al. 2014)
under the Representative Concentration Pathway (RCP) 8.5

emission scenario (Meinshausen et al. 2011; Taylor et al. 2012).
The resolution was 12 km and the time periods were 2001–2010
for the present and 2050–2059 for the future. CESM-WRF
scenario was used for projection of future wildfires.

The HadCM-HRM dataset was provided by the North
American Regional Climate Change Assessment Program
(NARCCAP) (Mearns et al. 2012). A regional meteorological

model, the HRM3, was run with the boundary conditions
provided by the CMIP3 global climate projected by the Hadley
Centre Climate Model, version 3 (HadCM3) under the IPCC

Special Report on Emission Scenarios (SRES) A2 (Nakićenović
et al. 2000). The resolution was 50 km with the time periods of
1971–2000 for the present and 2041–2070 for the future. The
HadCM-HRM scenario was used for projections of future fuel

loading and moisture, which had been conducted at a time when
only CMIP3 global climate projections were available.

Fire projection

Fire occurrence prediction models can be classified into two
types of DGVMs and statistical models. Most DGVMs have
incorporated fire modules that predict fire occurrence mainly

based on vegetation conditions as well as weather and human
factors (Venevsky et al. 2019). Statistical models build fire
relationships with meteorological and other conditions based on

data (Taylor et al. 2013; Plucinski et al. 2014; Phelps and
Woolford 2021). Such relationships include logistic regression
(Nadeem et al. 2020), logistic generalised additive models

(Woolford et al. 2011), and machine learning methods (Van
Beusekom et al. 2018).

The present and future wildfires were obtained in this study
frommodelling results of an empirical fire model (EFM), which

includes generalised regression equations formed based on the
extreme value theory (Liu et al. 2014b). The predictors are
normalised Keetch–Byram Drought Index (KBDI) (Keetch and

Byram 1968), appearing as a linear combination of three terms
in powers of 1, 2, and 3, and normalised relative humidity (RH).
KBDI measures wildfire potential determined by daily maxi-

mum temperature and precipitation and average annual precipi-
tation. The value ranges of 0–200, 200–400, 400–600, and 600–
800 indicate low, moderate, high, and extreme fire potential.

KBDI was formed based on the fire and meteorological condi-
tions in south-east USA. There are applications of this index in
different world regions with reasonable relationships with fire
activity. We recently found that KBDI was a better predictor

than meteorological variables and some other fire/drought
indices for seasonal and annual fires (Zhao and Liu 2021).
Because the magnitude (average) varies from the south-east to
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Fig. 1. Diagram of research methods. CONSUME is a tool for fuel consumption and emissions. CESM,

Community Earth System Model; DLEM, Dynamical Land Ecosystem Model; EFM, Empirical Fire

Model; FOFEM, First Order Fire Effects Model; KBDI, Keetch–Byram Drought Index; NARCCAP,

North American Regional Climate Change Assessment Program; RH, relative humidity; WRF, Weather

Research and Forecast.
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another region, the anomaliesmakemore sense than the absolute
values for a specific region. For this reason, we used anomalies
rather than absolute values in this study.

KBDI and RH at a location of a historical fire were first
calculated. Their anomalies were obtained by subtracting these
values from the corresponding multiple-year averages at this

location. The KBDI anomaly was put into an anomaly category.
The number of this KBDI anomaly was counted for all fires.
The average of all RH anomalies with this KBDI anomaly

categorywas obtained. Note that KBDI andRH could go different
ways because they are proportional and inversely proportional to
temperature respectively. However, they aremostly consistent at a
long time scale, during which abnormal atmospheric circulations

are a major driver for both properties. For example, KBDI above
normal over a long period usually indicates a drought condition
and is in favour to fire occurrence. RH usually goes below normal

under drought condition. The statistical significance of the future
changes inKBDI andRHwas tested using t-statistic (same for fuel
moisture and fuel loading is described below).

Wind is a meteorological variable often used in fire prediction.
It was not included in this study for a couple of reasons. First, we
compared KBDI with two other fire indices (Liu et al. 2014b),

Fosberg Fire Weather Index, which includes temperature, humid-
ity, and wind factors, and Large Fire Potential meteorological
condition, which measures windy and dry (unsaturation degree)
conditions. The KBDI had better relationships with large fires.

Second, the EFM (including wind speed as a predictor) had lower
fitting rate than the one without this parameter.

The variable to be predicted is the total number of fire

occurrences in thewesternUSAover a certain time period divided
by the number of the KBDI at a specific anomaly level per grid
point of the region. The EFM is composed of a set of equations,

each for a fire size range and aKBDI anomaly level. The projected
average fire number is the sum over all fire ranges and KBDI
anomaly levels. Note that this model projects average fire number
in thewesternUSAwithout spatial resolution.A similarmodel but

with regional resolution would hardly reach a significance level
because of very limited number of historical fires for a certain fire
size range and KBDI anomaly level. Also note that burned area

was not predicted by the model. The present burned area for each
of the fire size categories was obtained from measured data. The
future burned area of each size category was obtained from the

present burned area with a predicted increasing factor of the ratio
of the future-to-present fire number for the category.

The historical fire data used for developing the model were

the Federal Wildland Fire Occurrence Data (http://wildfire.cr.
usgs.gov/firehistory/data.html), which contains fire records col-
lected by USA federal land management agencies for fires that
occurred during 1980–2013. This dataset was used to calculate

fire emissions for the continental USA (Liu 2004). The historical
daily meteorological data used to develop the model were
obtained from the North American Regional Reanalysis

(NARR) at a horizontal resolution of 32 km (Mesinger et al.
2006). The Chi-squared test for the linear regression models
showed significance level of P , 0.01.

Fuel loading modelling

Forest fuels for a fire are all kinds of plant material, including
grasses, shrubs, trees, dead leaves and branches, and duff.

Dead fuels are divided into four ‘timelag’ categories: 1-h, 10-h,
100-h, and 1000-h fuels, corresponding to fuels of less than
0.25 inch, 0.25–1 inch, 1–3 inches, and 3–8 inches diameter

respectively. Fuel loading is the amount of fuel present
expressed quantitatively in terms of weight of fuel per unit area.
We used the Dynamical Land EcosystemModel (DLEM) (Tian

et al. 2010) to simulate fuel loading. DLEM is a highly inte-
grated process-based terrestrial ecosystem model that simulates
daily carbon, water and nitrogen cycles driven by the changes in

atmospheric chemistry, including ozone, nitrogen deposition,
CO2 concentration, climate, land-use and land-cover types and
disturbances. Similar to most DGVMs cited in Introduction,
DLEM includes multiple core components of biophysics, plant

physiology, soil biogeochemistry, dynamic vegetation, and
land-use. The DLEM carbon pools have four fuel types of litter
and duff, herb/grass, shrub, and coarse woody debris. Although

the number of fuel types is relatively small in compassion with
many other DGVMs, there is a feature with DLEM that was
especially useful for fire research of this study: the model had a

module to convert simulated carbon pools to fuel types widely
used for fire emission calculation.

The carbon pools were converted into the FCCS fuel load

map types based on the approach used in Zhang et al. (2010):
litter and duff in DLEM were comprised of 1- and 10-h dead
fuels in FCCS; herb/grass in DLEM was equivalent to grass in
FCCS; shrub in DLEM was equivalent to shrub in FCCS; and

coarse woody debris in DLEM comprised 100-h and longer-lag
fuels in FCCS. Fuel loading was estimated by accumulating
biomass of all types of the FCCS fuels. It was assumed that

distribution of fuelbeds would not change from present. Note
that when projecting fuel loading using the DLEM, the model
was run continuously from 1970 to 2070. However, the original

NARCCAP downscaled data were not available for between
2000 and 2040. An algorithm was developed to fill this data gap
(Liu et al. 2015b).

Fuel moisture calculation

Fuel moisture can be obtained from measurements and model-
ling usingmeteorological variables or vegetationmodels. In this
study, we used the empirical algorithms from the National Fire

Danger Rating System (NFDRS) (Cohen and Deeming 1985) to
estimate fuel moisture based on meteorological conditions. The
1- and 1000-h fuel moistures in the continental USA based on

multiple NARCCAP regional climate change scenarios were
available (Liu 2017). The calculations of fuel moisture using the
NFDRS scheme are similar between 1- and 10-h fuels and
between 100- and 1000-h fuels. For this study, the results of

1000-h fuel moisture projected based on the HadCM3-HRM3
regional climate change scenario were used.

Fire emission calculation

Fire emission was calculated using:

Ek ¼ A� FL� CE � EFk ð1Þ

where Ek is wildfire emissions of species k, A area burned, FL
fuel loading, CE consumption efficiency, and EFk emission
factor of species k (Liu 2004).
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CE was obtained based on equations provided in Consume
3.0 (Prichard et al. 2007). The values for coarse wood and
ground fuels are dependent on 1000-h fuel moisture and duff

moisture respectively. There is no general duff moisture model,
so some fuel tools such as FARSITE (Finney 2004) use empiri-
cal relationships between duff moisture and dead fuel moisture.

In this study, we converted the fitting line shown in Brown et al.
(1985) to the following function:

FMCduff ¼ 175=20� FMC1000 � 5ð Þ ð2Þ

where FMCduff and FMC1000 are duff and 1000-h fuel moisture
in% respectively.

EFk was obtained from FOFEM 4.0 (Reinhardt et al. 1997).
The values in FOFEM 4.0 are presented for various fuel types of

the western USA. The newly released FOFEM 6.7 (Lutes 2020)
updates fire emission factors based on, for example, Urbanski
(2014) and Prichard et al. (2020), which are larger than the old

values for some emission species such as PM2.5. However, the
updated values are presented in different fire phases rather than
fuel types. Thus,EFk in the old FOFEMversionwas used for this

study.
The calculated present PM2.5 emissions of fires for the western

USA states were comparedwith two sources provided inUrbanski

et al. (2011), the 2005 EPA National Emission Inventory (NEI)
and theWildland Fire Emission Inventory (WFEI). The EPANEI
used the same fire emission factors as this study. TheWFEI was a
high-resolution model for non-agricultural open biomass burning,

with burned aeras from satellite remote sensing and emission
factors from probability distribution functions developed based on
multiple field measurements.

Results

Wildfires

Present wildfires

Nearly 3000 large wildfires occurred in western USA during
2001–2010 (Fig. 2), ,15, 30, 90, 500, 500, and 1900 with the
sizes of .200, 100–200, 50–100, 10–50, 5–10, and 1–5 thou-
sand acres respectively. The fires of.200 thousand acres were

found mostly in the south-western half of western USA (Fig. 3).
The fires of 10–50 thousand acres accounted for ,1 million
acres each year, and those in other size ranges each accounted

for ,0.5 million acres each year. The total annual burned area
was ,3.5 million acres.

The fire number was,400–500 in 2006 and 2007, 300–350

in each year of 2001–2004 and 2005, and 140 in 2004 (Fig. 4a).
The burned area was around 7 million acres in each of 2002,
2006, and 2007 (Fig. 4b). Both monthly fire number and burned

area were much larger in summer (June to August) than other
seasons (largest in July), larger in fall than spring, and minimal
in winter (Fig. 5).

Changes in meteorological conditions for wildfires

KBDI averaged over summer and fall seasons during 2001–
2010 (Fig. 6a) varied fromextremepotential inmost ofCalifornia
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and south-western Nevada (KBDI .600), to high or moderate
potential in some areas of the South-west, southern Great Plains,
and North-west (200–600), to low potential in the Rocky

Mountains and northern Great Plains (,200). By 2050–2059,
KBDI is projected to increase across western USA (Fig. 6b). The
increase is more remarkable in the areas where fire potential was

relatively low during 2001–2010, by more than 100 in the
northern Great Plains and 50–100 in many areas of the North-
west, South-west, and southern Great Plains. The change is

significant at P, 0.01.
RH averaged over summer and fall seasons during 2001–

2010 (Fig. 7a) was lower than 50% in most of California, the

Great Basin, and the South-west, and lowest in the California–
Nevada border area (less than 30%).RHwas greater than 60% in
the northern Pacific Coast, Rocky Mountains, and northern
Great Plains. RH is likely to decrease by 2050–2059 in most

of the western USA. The change is significant at P, 0.01. The
decrease ismore remarkable in some areas whereRHwas higher
during 2001–2010, such as the Rocky Mountains. In contrast,

RHwould increase in the relatively dry areas during 2001–2010,
including California and the Great Basin. The future changes in
KBDI and RH indicate that climate change likely increases the

dryness inmost of western USA,mainly in the present relatively
wet areas.

Changes in wildfires

Wildfires are projected to increase for all fire size ranges.
The total number of wildfires inwesternUSAduring 2001–2010
obtained using the fire model based on the KBDI and RH values
is ,2460, which is 18% lower than the observed fire number.

The annual burned area corresponding to the predicted fire
number is ,2.6 million acres, which is 26% lower than the
observed area.

Themodel projects an increase in fire number by,12% from
the present period to the future period of 2050–2059, due to the
overall increasing KBDI and decreasingRH. The increasing rate

of fire number is larger for the fire ranges with larger fire sizes,
leading to a much larger increasing rate for burned area than fire
number. Burned area is projected to increase by 32%.

Fuel loading

The simulated fuel loading during 1971–2000 using DLEMwas
more than 5 kg m�2 (20 tons acre�1) in the northern Pacific

coast, southern Rocky Mountains, and some other mountain
areas (Fig. 8). Fuel loading is projected to increase in these areas
by 2041–2070 by up to 0.5 kg m�2 (2 tons acre�1). The increase

is significant at P, 0.01. However, fuel loading is projected to
decrease by up to 0.5 kg m�2 (2 tons acre�1) in the Great Plains,
southern South-west, and far northern Rocky Mountains. Wood
biomass and live herbwould increase while litter and duff would

decrease.

Fuel moisture

The spatial patterns of present FMC1000 and future change

(Fig. 9) are similar to those of RH. The spatial correlation
coefficient between the two fields is 0.76 (P , 0.01). Present
FMC1000 increases from below 6% in California and Nevada to

10% in South-west and southern Great Plains, 14% in the
northern Great Plains, and more than 20% in some northern
Pacific Coast and Rocky Mountains. FMC1000 is projected to
decrease overall, by 1% in most of the Rocky Mountains and
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Great Plains. It would increase slightly in California and eastern
Oregon. The change is significant at P , 0.01.

Fire emissions

The annual PM2.5 emission from wildfires in western USA

(calculated based on the observed burned area during 2001–

2010) and the simulated fuel loading and fuel moisture during

1971–2000 was 0.189 Tg. The annual variation of PM2.5

emission (Fig. 4c) is similar to that of burned area (Fig. 4b). The
calculated PM2.5 emission of 2005 was 0.123 Tg, which was

slightly larger than the 2005EPANEI of firemission (0.117Tg),
but 16% lower than the WFEI (0.147 Tg) for the western states
(Urbanski et al. 2011).

Wildfire annual PM2.5 emission projected (based on the
projected burned area during 2050–2059) and fuel loading and
fuel moisture during 2041–2070 is 0.283 Tg, an increase of
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49.2% from the present period (Fig. 10). The projected increase

in burned area, increase in fuel loading, and decrease in fuel
moisture would lead to increases of PM2.5 emission by 34.07%,
10.54%, and 1.07%, respectively, from 2001–2010 to 2050–
2059. Thus, the changes in the three properties contribute to

,74.6%, 23.1%, and 2.3% of total fire emission increase. Note

that the sum of the three increasing rates is slightly smaller than
the total increasing rate. The projections of other fire emission
species could be obtained through comparing emission factors
between PM2.5 and other species.
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Discussion

Increasing trends in future fire emissions

We projected an increase in fire emission of PM2.5 by,50% in
western USA from 2001–2010 to 2050–2059. This trend is the

same as those from previous projections (Spracklen et al. 2009;
Yue et al. 2013; Ford et al. 2018), despite the fact that it is
difficult to compare the magnitude of increase among the pro-

jections. One of the reasons for the difficulty is the difference in
emission species: we projected future PM2.5 emission from
wildfire, while others projected organic carbon and element

carbon emissions from wildfire. A direct application of pro-
jected fire emissions is to provide fire emission inputs for sim-
ulation of spatial distributions and temporal variations of smoke
using atmospheric transport and chemical models for evaluating

the air quality, human health, and climate impacts of future
wildfires. Such applications have been made with each of the
three previous studies. We also applied our projected future fire

emissions to project future PM2.5 andO3 inwestern USA using a
regional air quality model (Yang et al., 2021, unpubl. data). The
results show substantial increases in air pollutions in the future

due to the increasing fire emissions, which would lead to
increased exceedance of air quality standards in western USA.

The compositional analysis is a useful tool for fire study

(Weise et al. 2020). We used this tool in a recent study (Zhao
et al. 2020), but did not for this study because of two considera-
tions. First, unlike Zhao et al. (2020), for time series analysis,
this study predicted total fire number without spatial and

temporal resolutions. Second, the predicted fires were increased
for all size categories, suggesting that the impacts of fire number
dependence on size category would not change the increasing

trends of the total fires of all categories.

The role of future vegetation changes

A new understanding of the impacts of wildfire on air pollutant
emissions obtained from this study is the importance of future

change in fuel loading. The change in fuel loading would con-
tribute as much as one-third of the change in burned area to the
total fire emissions. Thus, projection of future fuel loading is

critical for accurate projection of future fire emissions. Fuel
moisture was found to have a minimal contribution to future
change in fire emissions. CONSUME (a tool for fuel con-

sumption and emissions) used in this study connects fuel con-
sumption efficiency with fuel moisture only for coarse woody
and ground fuels, whichmay underestimate the roles ofmoisture

in reducing consumption of other types of fuels. Studies using
different fuel moisture-consumption relationships are needed to
improve our understanding of the importance of fuel moisture to
future fire emissions.

The DLEM simulations conducted in the study only consid-
ered biomass changes under changing climate. Vegetation types
of a specific region could also change under changing climate,

which should be considered in future projection of fuel loading.
Some other impacts of climate change were also missed in this
study, for example, possibly longer growing seasons under

warmer conditions. These impacts could modify the decompo-
sition rates of falling fuels.

Atmospheric models have been used to project the spatial

distributions and temporal variations of fire emissions. Earth
system models include coupled atmospheric and vegetation
components with fire processes (Liu 2018). The recent develop-
ment added capacity to CESM in simulating fire-smoke-

atmospheric interactions (Zou et al. 2019b). Thus, they can be
used to project not only changes in wildfire, fuel, and emissions
under changing climate but also atmospheric concentrations of

smoke pollutants.

Uncertainties

There are several sources for uncertainties with the results
obtained from this study. Different time and length of present
and future periods and IPCC emission scenarios were used
between wildfire and fuel projections. The periods were 2001–

2010 and 2050–2059 for wildfire and emission projections and
1971–2000 and 2041–2070 for fuels. The magnitude of the
changes in fuels could be smaller if the periods for wildfire

projection had been used for fuel loading projection. On the
other hand, the large emission scenario of PRC8.5 was used for
wildfire projection but the moderate emission scenario of A2

was used for fuel loading projection. The magnitude of the
projected changes in fuels could be larger if the RCP8.5 emis-
sion scenario had been used for fuel loading projection. In

addition, the present and future periods for wildfire projection in
this study were only for 10 years. Wildfires vary noticeably at
not only annual but also decadal scale.Wildfires inwesternUSA
were relatively less active during the first half of the past four

decades but increased remarkably in the second half. A better
representation of present fire conditions would require a period
for three decades or longer.

The annual burned area corresponding to the predicted fire
number is ,2.6 million acres, which is 26% lower than the
observed area. The firemodel was developed using the observed

fire data during 1980–2013. Fires were less active during 1980–
1999 than 2000–2013. Thus, the fire model developed using the
fire data may underrepresent fire activity during the active
period of 2001–2010.
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The treatment of fuels and fuel loading was relatively weak
in this study. This effort to compare the relative contributions
from changes in fuel loading, fire, and fuel moisture with fire

emissions in the future was among the early attempts in the fire
research community. Improvements, especially in fuel loading
modelling, are needed in the future.

The fire prediction did not consider the impacts of burned
areas on subsequent fires. TheUSA has,800million acres each
of forested land and rangeland. The annual burned areas by

wildfires are ,6 million acres on average. Grass regenerates
very fast. Thus, the impacts of omission of burned areas of a year
on prediction of fires in subsequent years are expected to be
minimal for rangeland fires. However, assuming tree generation

takes a decade to reach a size with enough fuel for burning (a
very arbitrary estimate), and that two-thirds of wildfires occur
on forested lands, the prediction of forest fires would be biased

by up to about þ5% (4 million burned areas each year per
800 million acre forested land � 10 years).

Fire management

DGVMs have increased the capacity of fire modelling. They

have become a core component of climate systemmodels. In the
meantime, many forest fire management tools, for example,
LANDFIRE (Rollins 2009) and the First Order Fire Effects

Model (FOFEM) (Reinhardt et al. 1997), have been expanded
and updated to include the most recent research results. Inte-
gration of these tools with the DLEM and other DGVMs and

ESMs will help fuel modelling and management.

Conclusions

Projections of future wildfire emissions in western USA have
been based on both projected fire and fuel conditions under
climate change. The results indicated that fire emissions would

increase by ,50% from 2001–2010 to 2050–2059 due to the
future changes in wildfires and fuels. Thus, wildfire impacts on
air quality and human health would become much more serious

in western USA by the middle of this century. The results also
showed that the changes in future fuel loading would contribute
substantially to future fire emission increase. Thus, it is essential
to include fuel loading projection in future efforts to improve

projection of fire emissions under climate change. Also, inte-
gration of recently improved fuel mapping tools with DGVMs
and ESMs will help fuel modelling and management.
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