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Abstract Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8
research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission
factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in
seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to
simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are
generally consistent with previous measurements of crop residue burning, but the fires studied here emitted
high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of
aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid
production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO3/ΔCO, ΔPAN/ΔNOy, and
Δnitrate/ΔNOy reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O3

formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was
observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation
in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2,
NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated
(within a factor of ~2) to be equivalent to ~2% SO2 from coal combustion and ~1% NOx and ~9% CO from
mobile sources.

1. Introduction

Biomass burning (BB) produces significant amounts of trace gases and aerosol, which play important roles in
atmospheric chemistry and climate [Crutzen and Andreae, 1990]. One important component of BB is agricul-
tural field burning, a common practice worldwide. Emissions of global agricultural residue burning have been
estimated as the fourth largest among all types of BB [Andreae and Merlet, 2001]. An estimated 500 Tg of crop
residues was burned in fields annually in the developing world in the 1990s [Yevich and Logan, 2003].
Agricultural field burning is also extensive in the contiguous United States [McCarty, 2011], where wheat, rice,
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sugarcane, peanut, soybeans, barley, and corn croplands are thought to have the most significant burning
activity [Dennis et al., 2002].

Agricultural fire emissions can have a large impact on atmospheric composition and air quality on regional
scales. Previous studies demonstrated that the open burning of crop residues is a significant source of trace
gases and aerosols such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nonmethane
hydrocarbons, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2), black carbon (BC), organic aero-
sol (OA), and inorganic particulate matter [Dennis et al., 2002; McCarty, 2011; Huang et al., 2012; Kudo et al.,
2014]. These emissions can lead to severe air quality problems. For example, Zhang et al. [2015] found that
primary emissions from BB, mainly crop residue burning, contributed to 25 ± 8% of elemental carbon (EC)
and 40–65% of nonfossil organic carbon (OC) in four major cities in China during an extreme haze episode
in winter 2013. Despite the important impacts of the emissions from agricultural burning, emission inven-
tories are not well characterized. The uncertainty in agricultural burning emissions is primarily due to two
factors: (1) many of the emitted species are rarely measured or even identified; and (2) the burn area and/or
the fraction of crop residue burned are highly uncertain [McCarty et al., 2009; Randerson et al., 2012].

Field measurements from airborne and ground-based platforms are able to sample plumes in the complex,
natural environment and are a valuable method to characterize fire emissions and evolution. However, field
measurements of agricultural burning are scarce and have been mainly conducted in Mexico and China
[Yokelson et al., 2009, 2011; Kudo et al., 2014]. Laboratory studies are also an important method to characterize
BB smoke. Recently, the fourth Fire Lab at Missoula Experiment (FLAME-4) conducted laboratory burning stu-
dies of trace gas and particle emissions and their subsequent evolution from several types of crop residues
collected from various countries [Stockwell et al., 2014]. These lab-burned crop residues include fuels that
are important in the U.S., such as sugarcane, rice straw, and wheat straw.

The area of agricultural burning is usually estimated by surveys, conducted by state agencies, or by remote
sensing [McCarty et al., 2009; Melvin, 2012; Randerson et al., 2012]. Both methods can underestimate the area
burned and thus the magnitude of emissions. The survey method is limited as few states collect agricultural
burning information and burning practices vary widely from state to state. Remote sensingmethods have dif-
ficulty with detecting agricultural fires as they are often short lived and relatively small [Smith et al., 2007;
Hawbaker et al., 2008; Chang and Song, 2010; van der Werf et al., 2010].

Chemical and physical transformations of primary fire emissions can lead to significant changes in the gas-
eous and particulate phase composition of the smoke [Hobbs et al., 2003; Jost et al., 2003; Yokelson et al.,
2009; Akagi et al., 2012]. Therefore, understanding smoke evolution is an important issue. The chemical evo-
lution of trace gases can influence the formation of ozone (O3) and the conversion of NOx to other reactive
nitrogen (NOy) species such as peroxyacetyl nitrate (PAN) and particulate nitrate. O3 enhancement is com-
mon in tropical BB plumes, while both O3 production and destruction have been observed in boreal BB
plumes [Goode et al., 2000; Hobbs et al., 2003; Yokelson et al., 2009; Alvarado et al., 2010; Singh et al., 2010;
Jaffe and Wigder, 2012]. In temperate regions, the few available field studies of BB sampled prescribed fires
and observed O3 enhancement [Trentmann and Andreae, 2003; Akagi et al., 2012, 2013; Müller et al., 2016].
Jaffe and Wigder [2012] reviewed numerous factors that influence O3 production from wildfires, including
emissions of O3 precursors such as NOx and nonmethane organic compounds (NMOCs), combustion effi-
ciency, photochemistry, aerosol effects on chemistry and radiation, and local and downwind meteorological
patterns. PAN formation in the first few hours after emission has been observed in plumes of several types of
BB, such as a chaparral fire in California, a small forest fire in Georgia, and boreal forest fires [Yokelson et al.,
2009; Alvarado et al., 2010; Akagi et al., 2012; Müller et al., 2016]. The transport of PAN potentially influences
O3 formation downwind [Jacob et al., 1992; Leung et al., 2007; Jaffe and Wigder, 2012]. However, there are still
questions regarding PAN photochemistry since some previous modeling studies were not able to success-
fully simulate the observed concentrations of O3 and PAN in different BB plumes [Trentmann et al., 2005;
Alvarado and Prinn, 2009]. One exception is a recent study by Müller et al. [2016], which accurately modeled
O3 and PAN formation during the first hour of aging for a small forest fire in Georgia using the observations of
16 nonmethane organic gases, CH4, NOx, nitrous acid (HONO), CO, and O3. Another important plume process
is the formation of secondary organic aerosol (SOA). Highly variable SOA formation rates in aging BB smoke
have been reported, although limited net increase in OA mass is often observed [Capes et al., 2008; Yokelson
et al., 2009; Cubison et al., 2011; Hecobian et al., 2011; Jolleys et al., 2012; Vakkari et al., 2014]. Brown carbon
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(BrC), a component of OA that absorbs light in the UV and visible spectral regions, is associated with incom-
plete combustion and SOA formation [Hecobian et al., 2011; Saleh et al., 2013; Forrister et al., 2015]. Recent stu-
dies indicate that BrC evolution in BB plumes is controlled by secondary processes such as chromophore
formation and loss due to photobleaching, volatilization, and/or aerosol phase reactions, leading to different
evolution of BrC and bulk OA [Lee et al., 2014; Zhong and Jang, 2014; Forrister et al., 2015; Zhao et al., 2015].
Although agricultural field burning is ubiquitous in the U.S., no field study to date has characterized the emis-
sions and smoke chemistry of these fires.

A major goal of the recent Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling
by Regional Surveys (SEAC4RS) airborne field campaign was to quantify the emissions and assess the
atmospheric impacts of agricultural and forest fires. The heavily instrumented NASA DC-8 research aircraft
was deployed during this mission, which enabled measurements of a wide variety of chemical species and
physical parameters [Toon et al., 2016]. During SEAC4RS, five research flights targeted agricultural fire plumes
during late summer of 2013.

This study presents the first detailed measurements of trace gas and fine particle emissions from 15 agricul-
tural fires in the U.S., with locations shown in Figure 1. The vegetation burned is almost certainly rice straw
because it is essentially the only crop residue burned in the Mississippi River Valley during the late summer
and early fall [McCarty et al., 2007]. The evolution of O3 and reactive nitrogen species (PAN, NOx, HNO3, and
nitrate) in these fire plumes is examined in detail. The changes of OA concentration and BrC absorption in the
first 1.2 h of aging are also investigated. To evaluate our understanding of the rapid chemical evolution within
fire plumes in a biogenically influenced environment, a Lagrangian plume cross-section (LPCS) model is used
to simulate the formation of O3, PAN, and nitrate. By implementing the simple parameterization proposed by
Hodzic and Jimenez [2011], the model also simulates SOA and the change of atomic oxygen-to-carbon (O/C)
ratios that characterize OA oxidation state. With the measured emission factors (EFs), we also estimate the
annual agricultural fire emissions of SO2, NOx, and CO from the four states where the fires were sampled.

2. Methods
2.1. Aircraft Instrumentation

A wide range of chemical, physical, and optical measurements were used to characterize the agricultural fires.
Thesemeasurements are listed in Table 1 alongwithmethodologies, sample intervals, accuracies, and references.
All the data used in this work can be accessed through the NASA data archive (http://www-air.larc.nasa.gov/cgi-
bin/ArcView/seac4rs, doi: 10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud). All data usedwere synchronized to
match the rapid measurements of ambient water vapor, which ensured accurate peak alignment.

2.2. Airborne Sampling of Fires

The aircraft sampled agricultural fires during the five research flights by either cross-plume or long-axis pene-
trations at its typical air speeds in the range ~110–150m s�1. Figure S1 in the supporting information
includes two photographs taken from NASA DC-8 cameras showing two typical fires and the emanating
plumes that were sampled. Figure S2 exemplifies two time series obtained following each strategy. The
cross-plume transects were usually performed at or near the source at altitudes ranging from 0.3 to 1.3 km
above the ground, which provided observations of fresh smoke younger than several minutes. However,
since such sampling requires high time resolution measurements, some instruments could not get sufficient
data, especially for small fires. Therefore, the long-axis sampling strategy, including source-to-downwind and
downwind-to-source approaches, was also performed for some agricultural fires. The aircraft conducted the
long-axis source-to-downwind sampling by entering the smoke column very close to the active flame front at
an altitude between 0.2 and 1.3 km, mostly below 0.5 km. Maximum performance climbs were then
attempted to match the rise of the smoke and to extend sampling in the smoke. As the plane flew down
the long axis, it entered or exited both thicker and thinner plume regions, creating a series of peaks due to
intermittent sampling of higher concentrations along the plume length. The sample age for each peak was
calculated by dividing the downwind distance from the source by average wind speed, calculated using
3-D wind measurements [Chan et al., 1998]. The source locations usually preceded the largest fresh peak
by a few hundred meters since the smoke rose at an angle. The downwind-to-source sampling was
performed as the reverse of the source-to-downwind sampling. With the long-axis strategy, the aircraft
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acquired samples of both fresh and
aged plumes up to ~16 km down-
wind and ~1.2 h old. Figure 2 shows
an example of a partial flight path
over Arkansas on 23 September
2013 along with the locations of
the five agricultural fires sampled.
Table 2 summarizes the sampling
times and locations of the 15 agricul-
tural fires and the number of sam-
ples obtained by each of the two
sampling strategies. Of the 15 fires,
the sources of 12 fires were recorded
by the aircraft cameras. The loca-
tions of these fires are defined as
the centers of the burning fields

with an accuracy of ~300m for a typical sized field. For the three fires for which sources were not recorded,
their source locations were defined as the point where the 1 s CO concentration was highest in each plume
sample. The locations of the 15 fires are also displayed in Figure 1.

2.3. Estimation of Emission Ratios, Emission Factors, and Modified Combustion Efficiency

The enhancements of CO and CO2 (the two main gaseous emissions from BB) were examined for all five
flights to identify and delineate the edges of all agricultural burning plumes. BB tracers such as hydrogen cya-
nide (HCN) and acetonitrile (CH3CN) were then used to confirm that the CO and CO2 enhancements were due

Figure 1. Locations of the 15 agricultural fires during the SEAC4RS campaign.

Table 1. Aircraft Measurements Aboard the NASA DC-8 Research Aircraft During SEAC4RS

Measurement Method Sample Interval Calibration Accuracy Reference

SO2 and HCl SF6
� chemical ionization mass
spectrometry (CIMS)

0.5 s and 0.1 s at 1.2 sa 15–25% Huey et al. [2004]

PAN I� CIMS 0.5 s at 2 sa 15% Slusher et al. [2004]
NO, NO2, NOy, and O3 Chemiluminescence 1 s 3–15% Ryerson et al. [1999] and

Ryerson et al. [2000]
VOCs and OVOCsb Proton transfer reaction mass

spectrometry
0.1 s at 10 sa 5–15% Wisthaler et al. [2002]

NMHCs Whole air sampling and gas
chromatography

30–60 s 1–5% Blake et al. [2003] and
Simpson et al. [2011]

CO Differential absorption CO
measurement

1 s 5% Sachse et al. [1987] and
Diskin et al. [2002]

CO2 Nondispersive infrared spectrometer 1 s 0.25 ppm Vay et al. [2011]
HNO3, HCN, H2O2, hydroxyacetone,
HPALDs, isoprene hydroxynitrates,
and MVK/MACR nitrates

CF3O
� CIMS 1 s 30–50% Crounse et al. [2006], St. Clair

et al. [2014], and Paulot et al.
[2009a]

Formaldehyde Laser-induced fluorescencec/difference
frequency generation absorption

spectroscopyd

1 s 4–10% Cazorla et al. [2015],
Weibring et al. [2006], and

Weibring et al. [2007]
Nonrefractory submicron aerosol
(sulfate, nitrate, ammonium,
chloride, and organics)e

High-resolution time-of-flight mass
spectrometry

1 s 34–38% Canagaratna et al. [2007] and
Canagaratna et al. [2015]

Black carbon aerosolf Laser-induced incandescence 1 s 30% Schwarz et al. [2013]
Particle absorption coefficients Radiance research particle soot

absorption photometer
1 s 5% Virkkula et al. [2005]

Photolysis frequencies Spectral radiometry 3 s ~12–25% Shetter and Müller [1999]

aDisjunct sampling.
bIn the case of multiple neutral precursors for a specificm/z signal, we consider only species with a relative contribution> 10% to the total signal [Yokelson et al.,

2013; Stockwell et al., 2015; Müller et al., 2016].
cUsed to derive CH2O emissions for the flights on 6, 9, 11, and 16 September 2013.
dUsed to derive CH2O emissions for the flight on 23 September 2013 when laser-induced fluorescence measurement was not available.
eParticle diameter less than 1 μm.
fParticle diameter range is ~90–550 nm.
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to BB. For all the identified plumes, the
following quantities were derived:
excess mixing ratio, normalized excess
mixing ratio (NEMR), emission ratio
(ER), emission factor (EF), and modified
combustion efficiency (MCE). These
parameters were then used to charac-
terize initial emissions and plume evolu-
tion. The excess mixing ratio of a species
X (ΔX) was calculated by subtracting the
mixing ratio of X in the background air
from that in the fire plume. The back-
ground concentrations were based on
measurements made ~30 s before or
after the plume encounter, at a similar
location and altitude as the sampled
plume. For this time period, both con-
tinuous and discrete instruments
acquired sufficient data in background
air. The NEMR was derived by dividing
ΔX by the excess mixing ratio of a simul-

taneously measured species Y, where Y was usually a relatively long-lived tracer such as CO or CO2 that
enabled the NEMR to account for the influence of dilution. A special case of the NEMR is the emission ratio
(ER), which is ΔX/ΔY specifically in fresh smoke up to a few minutes old sampled at or near the fire source.
As shown in Table 1, the data used in this study were generated from various continuous and discrete instru-
ments with different time resolutions and response times. To allow comparison between different instru-
ments, NEMRs (or ERs) were obtained by comparing the integrals of ΔX and ΔY of a series of peaks as the
aircraft passed through an aged (or nascent) smoke plume (SO2 and BC are shown as examples in Figure 3).

The ER has two important uses: (1) it can be used to calculate EFs, and (2) differences between the ERsmeasured
at the source and the NEMRsmeasured downwind allow us to quantify gas and particulate phase chemistry and
gas-particle partitioning. Fire-averaged ERs were used to compute EFs. The fire-averaged molar ERs for gaseous
species and mass ERs for particulate species relative to CO2 or CO for each individual fire were computed as
follows. First, if only one fresh plume transect was available for a fire, the ER for this fire was the ratio between

Table 2. Details of the Agricultural Fires Sampled in the Southeastern U.S.

Date Fire # Local Time Latitude Longitude Field Sizea (ha) Location No. of Cross-Plume Samples No. of Long-Axis Samples

6 Sep 1b 13:57–13:58 36.8143 �89.6778 22.27 Missouri 0 1
36.8217 �89.6752 43.61

9 Sep 2c 18:22 32.4714 �91.8541 - Louisiana 1 0
3 18:35–19:19 32.3365 �91.9755 37.24 Louisiana 2 4

11 Sep 4 14:53–15:01 36.0497 �90.8913 127.59 Arkansas 0 2
16 Sep 5 17:21–17:25 35.7742 �89.9388 30.39 Arkansas 0 2

6c 17:27 35.6636 �90.0629 - Arkansas 0 1
7 17:32–17:33 35.6278 �90.1471 26.94 Arkansas 0 2
8 17:49–17:50 34.4073 �90.7022 22.58 Arkansas 0 1
9 17:57 33.8702 �90.8243 17.15 Mississippi 0 1

10 17:58–17:59 33.7876 �90.8746 21.64 Mississippi 0 1
23 Sep 11c 13:43–13:44 36.5622 �90.2199 - Missouri 1 0

12 13:46–14:05 36.4647 �90.0898 30.97 Missouri 1 2
13 14:09–14:21 36.3024 �90.5659 27.62 Arkansas 1 2
14 14:31–14:33 35.6727 �91.2077 18.15 Arkansas 0 1
15 14:46–15:07 36.0128 �90.8144 16.35 Arkansas 0 3

aDetermined using Google Earth.
bTwo adjacent fields were burning at the same time, and their plume columns merged into a single plume.
cFires for which the sources were not recorded by the aircraft cameras.

Figure 2. Fires sampled and DC-8 flight track with wind barbs on 23
September 2013. Flight track is colored by aircraft radar altitude. Red
triangles represent the locations of the five agricultural fires sampled.
Dashed black lines represent plume samples obtained.
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the integral of ΔX over the entire fresh plume relative to that of ΔCO2 or ΔCO over the entire fresh plume.
Second, for multiple discrete samples of a fire, the fire-averaged ER was obtained from the slope of the least
squares line (with the intercept forced to zero) in a plot of one set of integrals of excess mixing ratios versus
another [Yokelson et al., 2009]. However, species measured by the PTR-MS were treated differently, because
they were reported for 0.5–1 s measurements at a lower time resolution of every ~10 s. Potential errors due
to different sampling frequencies limit deriving the ERs of these species directly from ΔX/ΔCO in an environ-
ment with rapidly changing concentrations. For these species, we first obtained the ER relative to PTR-MS
benzene averaged over each fire by comparing the integrated excess for an entire fire to the integrated
excess amount for benzene. As benzene was also measured by the whole air sampling (WAS) system at time
resolutions of 30–60 s, this facilitated obtaining ERs of PTR-MS species relative to ΔCO. To be specific, these
ERs can be obtained by multiplying the ER of Δ(PTR-MS species)/Δ(PTR-MS benzene) by the fire-averaged
ER of Δ(WAS benzene)/ΔCO, with Δ(WAS benzene) and ΔCO integrated over the same period within the
plume. For the three fires where WAS benzene was not available (Fires 2, 7, and 11), the fire-averaged ERs
of Δ(PTR-MS benzene)/ΔCO were used for obtaining ERs of PTR-MS species, in which Δ(PTR-MS benzene)
and ΔCO were averaged over the same sampling time.

Emissions undergo chemical and physical changes that can deplete or enhance their mixing ratios. In this
study, short-lived compounds are defined as those with lifetimes less than ~1 day [Atkinson and Arey, 2003;
Atkinson et al., 2006; Simpson et al., 2011]. To further identify any other reactive compounds, the NEMR of each
species, which was obtained from long-axis samples, was plotted versus smoke age to identify possible evo-
lution. For both the short-lived compounds and the longer-lived compounds that also exhibited evolution,
the fire-averaged ERs were calculated only using the fresh samples that were less than ~10min old and
sampled within ~3 km of the sources where CO concentrations peaked. These reactive compounds include
nitrogen monoxide (NO), nitrogen dioxide (NO2), formaldehyde, acetaldehyde, isoprene/furan plus isomeric
pentadienes and cyclopentene, monoterpenes, methyl vinyl ketone (MVK) plus its isomers methacrolein
(MACR) and crotonaldehyde, nitrate, ammonium, and OA. The long-axis sampling strategy often gave interinstru-
ment NEMRs at a series of typically 5–10 downwind ages up to ~1.2 h, which also enabled characterizing down-
wind plume evolution of reactive compounds. However, besides plume evolution, the changes occurring
downwind can also reflect changes at the source that occurred before the aircraft arrived. In most cases the
source changes can be assumed to be small as the fire burned through a homogeneous fuel bed in a single crop
type. The cases where source combustion regime changes were contributing can be identified by looking at the
ΔBC/ΔCO ratio as a surrogate for the flaming to smoldering ratio [Yokelson et al., 2009]. For all except one fire (Fire
12) in which BC was measured, the average ΔBC/ΔCO ratios for the last few ages were similar to the ΔBC/ΔCO
ratios near the sources within measurement uncertainty (Figure S3). In addition, there was generally no apparent
relationship between the observed smallΔBC/ΔCO variations and the evolution of O3, PAN, or OA (r2 ofΔBC/ΔCO
versus ΔO3/ΔCO or ΔPAN/ΔCO ranged from 0.001 to 0.37). The exceptions are the relatively good correlations
between ΔBC/ΔCO and ΔO3/ΔCO (r2 =0.61) and ΔPAN/ΔCO (r2 =0.86) for Fire 12 and that between ΔBC/ΔCO
and ΔOA/ΔCO (r2 =0.77) for Fire 13. Except for these cases, we concluded that the downwind changes described
here were driven mainly by chemical and physical evolution rather than source changes with time.

Figure 3. Emission ratio plots of (a) ΔSO2/ΔCO2 and (b) ΔBC/ΔCO2 from Fire 4 on 11 September 2013.
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EFs, in units of grams of compound X emitted per kilogram of dry biomass burned, were derived for all the
individual fires using the carbon mass balance method, which assumes that all the volatilized carbon is
detected [Yokelson et al., 1999]:

EFX ¼ FC�MWX=MWC�CX=CT (1)

where FC is the carbonmass fraction for which we use a value of 39.3 ± 2.4%, which is an average of rice straw
collected from California and Arkansas, U.S. and from China based on elemental analysis (ALS Analytics,
Tucson); MWX and MWC are the molecular weight of compound X and the atomic weight of carbon, respec-
tively; and CX/CT is the number of emitted moles of compound X divided by the total number of moles of
carbon emitted. CX/CT was calculated using

CX

CT
¼

ΔCX
ΔCO2Xn

j¼1
nCj� ΔCj

ΔCO2

� � (2)

where ΔCX/ΔCO2 and ΔCj/ΔCO2 are the fire-averaged ER of species X to CO2 and that of carbon-containing
species j to CO2, respectively; and nCj is the number of carbon atoms in compound j. The sum of the moles
of carbon divided by the emitted moles of CO2, the denominator in equation (2), was determined from the
measured carbon-containing species including CO2 and CO. Sources of uncertainties that contribute to the
overall uncertainty of individual EFs include (in order of significance): (1) the uncertainties in the integrated
ΔX vary by species and fire, but are usually near instrumental uncertainties (Table 1) given the significant
enhancements in fresh plumes; (2) the uncertainties in the slopes of ΔX versus ΔY are usually small (<5%)
while the ER-derivation method for PTR-MS species is likely associated with another ~20% uncertainty; (3)
the ~6% uncertainty in the carbon mass fraction; and (4) the sum of the moles of carbon determined from
CO2 and CO could underestimate the total carbon by 2–4%, which would lead to an overestimation of EFs
by 2–4% [Akagi et al., 2011]. In contrast to the individual EF uncertainty, fire-to-fire variability is the dominant
uncertainty (≥40% except for CO2 and CO) and is reported throughout.

BB emissions also vary with different combustion processes, e.g., flaming and smoldering. The MCE, which
describes the relative amount of flaming or smoldering [Akagi et al., 2011], was also calculated. MCE is defined
as ΔCO2/(ΔCO2+ΔCO). Higher MCE values indicate more flaming combustion and lower MCE more smoldering
combustion. Pure flaming has an MCE near 0.99, while smoldering has an MCE over a larger range (~0.65–0.85)
but ismost often near 0.8. An overall fire-integratedMCE near 0.9 suggests roughly equal amounts of flaming and
smoldering [Akagi et al., 2011]. Fire-integrated MCEs are presented here for comparison to fire-averaged EFs.

2.4. Calculation of BrC Absorption

Particle absorption coefficients measured at two wavelengths (470 and 532nm) by a particle soot absorption
photometer (PSAP) were used to infer BrC absorption in fire plumes [Lack and Langridge, 2013]. PSAP data were
corrected for a known scattering interference from particles deposited on the collection media based on
Virkkula [2010]. The aerosol absorption Ångström exponent (AAE) was determined from a pair of observations
at 470 and 532nm and then used to estimate the aerosol absorption at 365 and 660nm, using equations (3)–(5).

AAEPSAP ¼� ln bap;PSAP 532ð Þ� �� ln bap;PSAP 470ð Þ� �
ln 532ð Þ � ln 470ð Þ (3)

bap;PSAP 365ð Þ ¼ bap;PSAP 532ð Þ 365
532

� ��AAEPSAP
(4)

bap;PSAP 660ð Þ ¼ bap;PSAP 470ð Þ 660
470

� ��AAEPSAP
(5)

The light absorption by BC at 365 nm (bap,BC(365)) can then be derived by extrapolation using bap,PSAP(660) and
a BC AAE of 1 [Bergstrom et al., 2002; Kirchstetter et al., 2004; Schnaiter et al., 2005], assuming that absorption at
660 nm is mainly due to BC and that the BrC contribution is minimal [Liu et al., 2014].

bap;BC 365ð Þ ¼ bap;PSAP 660ð Þ 365
660

� ��AAEBC
(6)
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BrC absorption at 365 nm (bap,BrC(365)) was then determined as the difference between bap,PSAP(365) and bap,

BC(365). For each fire, we calculated fresh ER and downwind NEMRs of Δbap,BrC(365)/ΔCO, Δbap,BC(365)/ΔCO,
and Δbap,PSAP(365)/ΔCO.

Using PSAP data to predict BrC absorption is an indirect method that has inherent uncertainties. AAEPSAP,
given in equation (3), can be determined from different wavelength combinations (i.e., 470–532, 470–660,
and 532–660 nm). For SEAC4RS data set, only one wavelength pair 470–532 nm is available. Measurement
uncertainty of PSAP (5%) results in a 7% uncertainty in AAEPSAP. Liu et al. [2015] and Liu et al. [2014] found
that different pairs led to systematically different bap,PSAP(365), predicted by equations (3) and (4). They
found that the 470–660 nm pair gave results for bap,PSAP(365) in between the other pairs. The 470–
532 nm pair and the 532–660 nm pair resulted in bap,PSAP(365) that was ~20% higher and ~20% lower than
the 470–660 nm pair, respectively. Thus, our bap,PSAP(365) estimated from the 470-532 nm pair likely has an
uncertainty of 17%, when compared to the middle bap,PSAP(365) predicted from the 470–660 nm pair.
Another uncertainty comes from the attribution of BC. For example, since BC internally mixed with nonab-
sorbing material would have an AAEBC greater than 1, the attributed short-wavelength BC absorption was
likely underestimated [Lack and Langridge, 2013]. Lack and Langridge [2013] proposed that the uncertainty
in short-wavelength (404 nm) absorption by BC determined by extrapolation using an AAEBC = 1 ranged
from +7% to �22%. For this reason, we used 22% as an approximate uncertainty for the predicted bap,BC
(365). The uncertainties of the AAE attribution method and the PSAP measurement (5%) were then treated
independently and propagated in quadrature yielding uncertainties in bap,PSAP(365) and bap,BC(365) of 19%
and 23%, respectively. By combining these two uncertainties, the uncertainty in bap,BrC(365) is estimated to
be 20%–43%. Due to uncertainties associated with these various calculations, definitively attributing the
difference to be due to BrC is highly uncertain. However, for BB plumes sampled in an airborne study,
Liu et al. [2015] derived a reasonable closure (a slope within 22% of 1) between BC+ filter-based BrC versus
absorption coefficients derived from the PSAP wavelength pair 470–660 nm, which suggests that PSAP
AAEs greater than 1 were mainly due to the presence of BrC. Analogous to individual EFs, individual
Δbap,BrC(365)/ΔCO in fresh plumes likely have an uncertainty of 21%–43% by combining the uncertainties
in bap,BrC(365) and CO measurements. The accuracy of downwind Δbap,BrC(365)/ΔCO may be slightly
reduced by the diluted concentrations.

2.5. Lagrangian Plume Cross-Section Model

Wedeveloped a Lagrangian plume cross-section (LPCS)model based on the 1-D version of the Regional chEmical
trAnsport Model (1-D REAM) [Wang et al., 2007; Gray et al., 2010; Liu et al., 2010, 2012; Zhang et al., 2014, 2016].
This LPCS-REAMmodel was used to simulate the evolution of agricultural fire emissions. Differing from previous
modeling approach that treated the plume as a well-mixed Lagrangian parcel [Mason et al., 2006; Alvarado and
Prinn, 2009] or performed three-dimensional Eulerian simulations [Trentmann et al., 2003; Alvarado et al., 2009],
the LPCS-REAMmodel simulated the cross section of a fire plume along the cross-wind direction, so as to capture
the strong concentration gradient within the plume. The cross section was discretized into 200 horizontal boxes,
each 50m wide. Both the photochemistry within individual boxes and the mixing among different boxes were
computed alternately at a 15 s time step. The gas phase O3-NOx-hydrocarbon photochemistry mechanism was
taken from the 1-D REAM, including 110 species and 400 reactions. Chemical kinetics data were updated follow-
ing the latest compilation by Sander et al. [2011]. Additionally, themodel implemented a new isoprene chemistry
mechanism based on Paulot et al. [2009a] and Paulot et al. [2009b]. In our case, the use of the updated isoprene
mechanism led to negligible differences for the species of interest (e.g., O3 and PAN). The model used an implicit
diffusion scheme to calculate the mixing process along the cross-wind direction [Zhang et al., 2014]. The dilution
parameters included the initial plume width and the cross-wind horizontal diffusion coefficient, Ky. The initial
plume widths for all cases were set as 500m, consistent with the typical field size observed during SEAC4RS,
and were represented by the center 10 boxes in the model (the 96th–105th boxes). Ky was determined through
a pretest, in which themodel was run with various Ky (100, 500, 1000, 2000, 4000, 6000, and 10000m

2 s�1). When
a plume was penetrated by the aircraft more than one time (Table 2), it was likely that the dilution conditions
had changed and thus each pass was simulated separately. For each long-axis pass, we chose the Ky with which
the simulated CO concentrations had the least sum of squared error compared with the peak-averaged CO
observations. A sensitivity test confirmed that the chemical production of CO in the plume was <5%,
thus negligible.
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The model was constrained by aircraft measurements. Meteorological parameters such as temperature and
humidity in situ observations were used as model inputs. Photolysis frequencies were calculated from mea-
sured actinic flux and laboratory-determined molecular cross sections and quantum yields [Shetter and
Müller, 1999]. The initial concentrations in the center 10 boxes were set as fire emissions, i.e., the highest
values measured in plumes near the fire sources. Note that in addition to the fast measurements, VOC data
measured by WAS coupled with gas chromatography were also used as best estimates of the initial VOC
emissions (Table 1). However, since WAS collected integrated air samples, the WAS VOC data tended to
underestimate the actual fresh emissions. For other boxes, the initial values were specified with background
concentrations. During mixing and aging processes, the boundary conditions (the 1st and 200th boxes) were
specified with the background values identified from the data set. The simulated results at different plume
ages were averaged from the center 25 boxes to compare with the peak-averaged measurements. Two
examples of simulated CO mixing ratios along the cross-wind direction at ages between 0 and 30min are
shown in Figure S4.

To understand how VOC, oxygenated volatile organic compound (OVOC), and HONO emissions from the
agricultural fires impact the production of PAN, a series of sensitivity tests were conducted by perturbing
initial concentrations. Specifically, the sensitivities of PAN production to acetaldehyde, propene, isoprene,
methylglyoxal, methyl ethyl ketone (MEK), diacetyl, and HONO emissions were examined. Since HONO and
several important PAN precursors including methylglyoxal, MEK, and diacetyl [Liu et al., 2010] were not
measured in the campaign, the EFs for rice straw measured by Stockwell et al. [2015] were applied in order
to estimate their initial concentrations by scaling with the observed CO.

In addition to gaseous species, nitrate, SOA, and the O/C ratios were also modeled. We estimated the nitrate
production through the deposition of nitric acid (HNO3) to the aerosol surface using the formulation by
Dahneke [1983], with an uptake coefficient assigned as 0.15 [Sander et al., 2011]. The aerosol surface area
was calculated based onmeasurements by a laser aerosol spectrometer (TSI Inc., St. Paul, MN). Dry deposition
velocity of HNO3 was set as 2 cm s�1 [Zhang et al., 2009]. The wet deposition of HNO3 and the dry/wet deposi-
tion of nitrate aerosols to land or clouds were not included in the simulation because of the short time span of
the simulation (~1 h) and the common clear-sky conditions during the flights of interest. The SOA production
was calculated following the simple parameterization byHodzic and Jimenez [2011], using amass emission ratio
of 0.013 g of a lumped SOA precursor per gram of CO based on Cubison et al. [2011], a SOA yield of one, and a
rate constant with hydroxyl radical (OH) of 1.25× 10�11 cm3molecule�1 s�1. Deriving the photochemical age
from the simulated OH concentrations, the evolution of the O/C ratios of primary organic aerosol (POA) was also
calculated with the following equation similar to the approach proposed by Hodzic and Jimenez [2011] for the
evolution of urban emissions, but with different parameters

O=C ¼ 0:6� 0:2exp � A
0:05

� �
(7)

where A is days of photochemical age computed by dividing OH exposure by a typical OH concentration of

1.5 × 106molecules cm�3, i.e.,A ¼ ∫
t

0 OH½ �dt
� �

= 1:5�106molecules cm�3� �
, and 0.05 in days is the aging time

scale for the agricultural fires.

Due to plume tracking difficulties, plume intercepts were rarely perfect, posing challenges to model simulation.
To realistically interpret the photochemical processes, the cases presented here were selected because (1) the
dilution could be reasonably simulated with the model; (2) there are enough downwind data to compare with
the modeled concentrations; and (3) the initial concentrations of important species, such as NOx, are available.
These cases include the second pass of Fire 3, the two passes of Fire 4, and the first and third passes of Fire 15.

3. Results
3.1. Initial Emissions

The average MCEs and EFs for the 15 agricultural fires are shown in Table 3 along with the study-averaged
MCE and EF. Among the species that were quantified by the fast measurements from the NASA DC-8 plat-
form, at least 25 trace gases and 6 particle species exhibited elevated concentrations within the agricultural
fire plumes. This represents the most comprehensive suite of species measured in the field in the U.S. for
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agricultural fires to date. The fire-integrated MCEs derived in this work range from 0.895 to 0.958, with an
average of 0.930. Hence, most of these fires can be regarded as primarily flaming. EFs for most species
depend on the MCE. For this reason, we examined the calculated MCE and its correlation with EFs. Table 4
shows the linear regression results of EFs as a function of MCE for all species, including slopes, y intercepts,
and r2. No species had a good correlation (r2> 0.1) and a positive slope significantly different from zero,
which would signify production mainly by flaming combustion. Compounds with negative slopes are likely
associated with smoldering combustion since the emissions increase as the MCE decreases (e.g., toluene
and benzene). However, numerous factors besides flaming and smoldering could dominate the variability
in EFs. For species containing elements other than carbon, hydrogen, or oxygen, the emissions can depend
strongly on the fuel composition (e.g., SO2 and NOx) [Burling et al., 2010]. In general, the EFs of organic gases
correlated better with MCE than the EFs of inorganic gases and particles. The SEAC4RS EFs were also com-
pared to the limited crop residue burning EFs available from the literature, including both field and laboratory
studies. Table 5 summarizes the average EFs, the crop residue fuels burned, and the measurement approach
(i.e., field or lab study) for these studies. Note that the EFs from Stockwell et al. [2015] are predicted EFs at the
SEAC4RS-averaged MCE based on their linear regression between EF and MCE.
3.1.1. Emissions of Sulfur Compounds
Sulfur in soil partly comes from atmospheric deposition and is then made available to plants by bacterial
activity [Wilhelm Scherer, 2009]. Another source of soil sulfur is S fertilization, which helps increase rice yield

Table 3. Measured MCE and Emission Factors (g/kg) for All Agricultural Fires Sampled During SEAC4RS in Summer 2013a

Fire # 1 2 3 4 5 6 7 8
Date 6 Sep 9 Sep 9 Sep 11 Sep 16 Sep 16 Sep 16 Sep 16 Sep

MCE 0.895 0.919 0.914 0.906 0.920 0.944 0.930 0.939
Compound Formula

Gases
Carbon dioxide CO2 1289 1323 1316 1305 1325 1360 1340 1353
Carbon monoxide CO 96.2 74.3 79.2 86.1 73.2 51.2 63.8 55.5
Nitrogen monoxide NO 0.327 0.0613 0.0456 0.169 0.266 0.0904 0.118 0.125
Nitrogen dioxide NO2 1.79 1.38 1.84 2.09 1.37 0.718 1.73 2.23
Hydrochloric acid HCl 0.0207 0.00497 0.0253 0.0619 0.00792 0.0143 0.00545
Sulfur dioxide SO2 0.807 0.334 0.698 1.11 0.228 0.792 0.863
Hydrogen cyanide HCN 0.350 0.789 2.02 0.414 0.316 0.826 0.186
Formaldehyde HCHO 4.14 2.14 3.19 4.81 4.11 1.85 3.08 1.68
Methanol CH3OH 4.10 3.83 1.36 0.725 0.785 0.865 0.545 0.0566
Hydroxyacetone C3H6O2 2.59 3.56 3.93 2.35 1.61 1.70 1.06
Acetonitrile CH3CN 0.300 0.456 0.221 0.179 0.0535 0.0627 0.210 0.0638
Acetaldehyde C2H4O 1.46 2.66 2.02 1.43 1.19 0.812 3.00 0.948
Acetone/propanal C3H6O 0.555 1.697 1.12 0.329 0.436 0.439 0.893 0.0787
MVK/MACR/crotonaldehyde C4H6O 0.773 0.612 0.661 1.17 0.285 0.252 0.528 0.234
Isoprene/pentadienes/cyclopentene/furan C5H8/C4H4O 0.651 0.910 0.820 0.0501 0.279 0.238 0.648 0.0661
Isoprene hydroperoxyaldehydes C5O3H8 0.975 0.684 0.710 0.330 0.243 0.263 0.235
Benzene C6H6 0.320 0.360 0.313 0.657 0.177 0.160 0.373 0.207
Monoterpenesb C6H8 0.530 0.197 0.546 0.357 0.155 0.160 0.404 0.159
Toluenec C7H8 0.355 0.224 0.211 0.284 0.0986 0.0871 0.250 0.0919

Particles
Ammonium NH4 0.509 0.0745 0.813 0.995 0.151 0.133 0.364
Nitrate NO3 0.441 0.283 0.326 0.419 0.398 0.316 0.425
Chloride Chl 1.30 0.323 2.37 3.23 0.132 0.138 0.715
Sulfate SO4 0.420 -0.026 0.139 0.199 0.361 0.111 0.146
Organic aerosol OA 13.4 8.20 18.5 20.9 27.6 4.15 9.10
Black carbon BC 0.270 0.209 0.059 0.106 0.024 0.027 0.192 0.316
Submicron aerosold PM1 16.3 9.06 22.2 25.8 28.6 4.88 10.9

aThe study averages and the standard deviations are indicated in bold. Blank indicates no measurement available for the fire.
bMeasured by PTR-MS atm/z 137 and calibrated using α-pinene. By burning rice straw in a laboratory experiment, Stockwell et al. [2015] found up to two addi-

tional peaks atm/z 137 that were oxygenated compounds. However,Müller et al. [2016] did not find a significant contribution from oxygenated compounds to this
signal from forest fuel.

cMeasured by PTR-MS at m/z 93. Müller et al. [2016] found a 20% interference from the C6H5O
+ signal.

dSum of AMS species and BC.
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[Tsujimoto et al., 2013]. Significant amounts of SO2 and sulfate were observed in the sampled fire plumes, up
to 80 ppbv and 15 ppbv (Figure S2), respectively. As can be seen from Table 3, the excess mixing ratios of SO2

are substantially higher than those of sulfate. This indicates that the emitted sulfur was mainly in the form of
gaseous SO2. The average EF(SO2) for SEAC

4RS is 0.795 ± 0.377 g/kg, which is nearly 2 times higher than the
existing EF(SO2) for several other types of BB including tropical forest, savanna, and pasture maintenance fires
[Akagi et al., 2011]. This implies high sulfur content in rice straw, possibly resulting from high sulfur input into
soil such as S fertilization or high absorption of sulfur by rice. When compared to the lab-predicted EF(SO2) for
Asian rice straw [Stockwell et al., 2015], 1.22 ± 0.34 g/kg, the field average EF for U.S. rice straw is lower, statis-
tically significant based on t test at a 95% confidence level. The differences between the lab-predicted EF
(SO2) and the field EF(SO2) could be due to the differences in fuel, burning conditions, and sampling meth-
ods. SO2 has been established previously as a product of flaming combustion [Yokelson et al., 1996;
Andreae and Merlet, 2001]. For the agricultural fires sampled during SEAC4RS, although the slope of the linear
fit of EF(SO2) as a function of MCE is positive, the low r2 with a value of 0.05 indicates that the amount of
emitted SO2 was not primarily dependent on the ratio of flaming to smoldering. It is likely that SO2 emissions
are highly dependent on fuel sulfur content, as also found in laboratory studies [Burling et al., 2010; Stockwell
et al., 2014]. For particulate sulfate emissions, the average EF is 0.160 ± 0.115 g/kg. Hayashi et al. [2014]
measured lower EF(sulfate) from Japanese rice straw with values of 0.027 ± 0.000 and 0.063 ± 0.003 g/kg
under different residue moisture contents of 10.6% and 20.0%, respectively. The average EF(sulfate) during
SEAC4RS is over 2 times higher than those measured by Hayashi et al. [2014], probably due to fuel variability.

Table 3. (continued)

Fire # 9 10 11 12 13 14 15
Date 16 Sep 16 Sep 23 Sep 23 Sep 23 Sep 23 Sep 23 Sep Average Standard Deviation

MCE 0.926 0.947 0.957 0.958 0.922 0.942 0.926 0.930 0.018
Compound Formula

Gases
Carbon dioxide CO2 1334 1364 1378 1379 1328 1356 1334 1339 26
Carbon monoxide CO 67.4 48.4 39.7 38.8 71.5 53.6 67.9 64.5 16.6
Nitrogen monoxide NO 0.179 0.285 0.111 0.444 0.244 0.435 0.863 0.251 0.211
Nitrogen dioxide NO2 3.41 3.37 1.32 2.22 2.85 2.02 0.80
Hydrochloric acid HCl 0.0131 0.0206 0.0162 0.0167 0.0158 0.0129 0.0181 0.0144
Sulfur dioxide SO2 1.70 1.08 0.407 0.730 0.818 0.767 0.795 0.377
Hydrogen cyanide HCN 0.823 0.308 0.334 0.308 0.532 0.339 0.990 0.610 0.479
Formaldehyde HCHO 2.26 1.64 1.90 1.49 3.09 2.02 1.97 2.63 1.05
Methanol CH3OH 3.55 1.01 1.54 0.952 0.118 0.335 1.41 1.38
Hydroxyacetone C3H6O2 1.60 0.838 1.46 2.61 2.21 1.32 1.95 2.06 0.89
Acetonitrile CH3CN 0.324 0.0955 0.0978 0.170 0.0281 0.105 0.169 0.123
Acetaldehyde C2H4O 0.749 0.998 0.456 2.11 0.408 0.921 1.37 0.80
Acetone/propanal C3H6O 0.923 0.433 0.375 0.806 0.296 0.551 0.638 0.417
MVK/MACR/crotonaldehyde C4H6O 0.0266 0.256 0.201 0.618 0.162 0.501 0.449 0.305
Isoprene/pentadienes/
cyclopentene/furan

C5H8/C4H4O 0.195 0.261 0.221 0.674 0.253 0.491 0.411 0.282

Isoprene hydroperoxyaldehydes C5O3H8 0.298 0.214 0.246 0.469 0.440 0.287 0.285 0.406 0.229
Benzene C6H6 0.132 0.202 0.121 0.327 0.199 0.295 0.275 0.139
Monoterpenesb C6H8 0.236 0.0636 0.114 0.398 0.0360 0.256 0.258 0.164
Toluenec C7H8 0.184 0.0714 0.0872 0.160 0.0487 0.184 0.167 0.091

Particles
Ammonium NH4 0.348 0.582 0.355 0.234 0.612 0.341 0.420 0.424 0.261
Nitrate NO3 0.229 0.168 1.22 0.0792 1.16 0.414 0.228 0.436 0.337
Chloride Chl 1.07 1.66 0.176 1.22 0.883 0.555 1.16 1.07 0.89
Sulfate SO4 0.102 0.115 0.184 0.0932 0.210 0.0504 0.135 0.160 0.115
Organic aerosol OA 8.81 7.02 11.0 10.8 18.0 11.0 12.2 12.9 6.3
Black carbon BC 0.521 0.226 0.158 0.049 0.037 0.082 0.163 0.141
Submicron aerosold PM1 11.1 9.77 13.1 12.5 20.9 14.2 15.4 7.1
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3.1.2. Emissions of Chlorine Compounds
Sea salt deposition and the use of agricultural chemicals such as herbicides and insecticides can increase the
chlorine content in plants and therefore chlorine emissions from BB. The chlorine-containing species quantified
in this study are gaseous HCl and particulate chloride. For the 15 fires we sampled, average EFs of chloride and
HCl are 1.07± 0.89 and 0.0181±0.0144g/kg, respectively. If we calculate the average molar ratio of emitted
chloride to HCl from their average EFs, a ratio of ~ 60 indicates that chlorine was mainly emitted as chloride.
Since the samples were all from inland areas, the high chloride emission from rice straw burning are more
likely to result from the use of agricultural chemicals rather than impacts from sea salt. During FLAME-4,
Stockwell et al. [2014] observed high HCl emissions with an average EF of 0.458 ± 0.308 g/kg, adjusted to
the SEAC4RS-averaged MCE. They also observed that the concentration of HCl decayed rapidly in several
minutes in fresh smoke that was stored in low-light conditions for rice straw and other fuels. Christian
et al. [2010] observed high chloride and below-detection-limit HCl in the fresh emissions from two barley
residue fires in Mexico. Stockwell et al. [2014] obtained fresher samples in the lab, which were seconds old,
while this study and Christian et al. [2010] sampled smoke that was usually several minutes old in field.
Thus, the reason that the field studies observed much less HCl might be that HCl rapidly decreased after
emission by partitioning to the aerosol phase. In the lab study conducted by Hayashi et al. [2014], fire-
integrated samples of HCl and chloride were collected by cellulose filters and glass-fiber filters, respec-
tively. Therefore, the observed high chloride and low HCl EFs were averages from a complete burning
process from the ignition to the end of the smoldering period.

Lab studies have shown that the emission of HCl correlates with flaming combustion [Burling et al., 2010;
Stockwell et al., 2014], while that of particulate chloride does not depend strongly on the ratio of flaming
to smoldering [Christian et al., 2003]. However, for the U.S. rice straw, the linear fits of EFs versus MCEs in

Table 4. Statistics for the Linear Regression of Fire-Averaged EF as a Function of Fire-Integrated MCEa

Species Slope Y Intercept r2

Species With Positive Slopes Not Significantly Different From 0
SO2 4.25 (5.83) �3.16 (5.42) 0.05
NOx as NO 2.6 (10.8) �0.82 (9.99) 0.005
NO 0.69 (3.23) �0.39 (3.00) 0.004
Nitrate 0.98 (5.23) �0.48 (4.86) 0.003
NO2 1.1 (13.7) 1.0 (12.7) 0.0005

Species With Negative Slopes Significantly Different From 0
MVK/MACR/crotonaldehyde �13.4 (2.7) 12.9 (2.5) 0.68
HCHO �47.7 (9.3) 47.0 (8.6) 0.67
Toluene �3.88 (0.85) 3.78 (0.79) 0.64
Monoterpenes �6.66 (1.64) 6.45 (1.53) 0.58
HPALDs �9.33 (2.35) 9.09 (2.19) 0.57
Δbap,BrC(365)/(ΔCO +ΔCO2)

b �0.226 (0.059) 0.226 (0.055) 0.53
Benzene �5.17 (1.54) 5.08 (1.43) 0.48
Hydroxyacetone �30.5 (10.8) 30.5 (10.1) 0.40

Species With Negative Slopes Not Significantly Different From 0
HCN �13.4 (6.4) 13.0 (6.0) 0.27
Acetaldehyde �21.9 (10.6) 21.8 (9.8) 0.26
OA �173 (84) 173 (78) 0.26
Sulfate �3.06 (1.56) 3.01 (1.45) 0.24
Isoprene/furan/pentadienes/cyclopentene �7.35 (3.79) 7.24 (3.52) 0.24
Ammonium �6.06 (3.66) 6.05 (3.40) 0.19
CH3CN �2.81 (1.72) 2.79 (1.60) 0.18
Chloride �20.4 (12.5) 20.0 (11.7) 0.18
HCl �0.274 (0.213) 0.273 (0.198) 0.13
CH3OH �20.9 (20.3) 20.8 (18.9) 0.08
Acetone/propanal �6.18 (6.17) 6.39 (5.74) 0.08
BC �0.54 (2.19) 0.67 (2.04) 0.005

aValues in parentheses represent one standard deviation. Species are organized by the sign and significance of slopes
and then by the magnitude of r2.

bThe unit of the ER of Δbap,BrC(365)/(ΔCO +ΔCO2) is Mm�1 ppb�1.
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Table 4 indicate that neither HCl nor chloride strongly correlates with MCE (r2 ≤ 0.18). Analogous to sulfur, EFs
of chlorine species are likely highly dependent on the fuel composition. Christian et al. [2003] and Hosseini
et al. [2013] found a strong relationship between fuel chlorine content and chloride-containing particulate
emissions for a series of laboratory fires. Stockwell et al. [2014] also found in lab studies that for a wide variety
of biomass fuels, the emissions of HCl were positively correlated with fuel Cl. In this airborne study, a large
fraction of HCl may have already incorporated into the particles before being sampled, which could also lead
to a weak correlation between EF(HCl) and MCE.

Table 5. Comparison of EFs (g/kg) Measured in Field and Lab for Crop Residue Fuelsa

Compound SEAC4RS (This Work)

FLAME-4 at SEAC4RS-Average
MCE (Stockwell et al. [2015])

Akagi et al.
[2011]b

Kudo et al.
[2014]c

Hayashi et al.
[2014]

Crop type SE U.S. rice straw Asian rice straw Unidentified crop
residue in Mexico

Chinese wheat Japanese rice straw

Measurement approach Airborne
field study

Lab study Airborne
field study

Ground-based
field study

Lab study

Moisture content (%) - - - - 10.6 20.0
MCE 0.930 0.930 0.925 0.930 0.949 0.910
CO2 1339 (26) - 1664 (66) 1598 (5) 803 (65) 946 (49)
CO 64.46 (16.57) - 85.6 (34) 77.2 (6.9) 27.2 (1.7) 59.4 (0.7)
NO 0.251 (0.211) 1.86 (0.28) 2.06 (0.79) - - -
NO2 2.02 (0.80) 1.70 (0.25) 3.48 (2.11) - - -
NOx as NO 1.58 (0.63) 2.97 (0.32) 3.64 (1.13) - - -
NH3 - 1.12 (0.77) 1.76 (1.35) - 0.059 (0.045) 0.025 (0.020)
HCl 0.0181 (0.0144) 0.458 (0.308) - - 0.062 (0.003) 0.022 (0.006)
SO2 0.795 (0.377) 1.22 (0.34) - - - -
HCN 0.610 (0.479) 0.399 (0.160) 0.16 (0.30) - - -
HCHO 2.63 (1.05) 1.29 (0.61) 1.85 (0.92) 1.07 - -
CH3OH 1.41 (1.38) 1.48 (1.56) 2.67 (1.58) 2.94 - -
Hydroxyacetone 2.06 (0.89) 1.33 (1.47) - - - -
CH3CN 0.169 (0.123) 0.230 (0.092) - 0.20 (0.03) - -
Acetaldehyde 1.37 (0.80) 2.09 (1.46) - 1.02 - -
Acetone 0.638 (0.417)d 0.989 (0.532) - 0.83d - -
Propanal - - - -
MVK 0.449 (0.305)f 0.489 (0.398)e - 0.43 (0.02)e - -
MACR - - -
Crotonaldehyde - - - - -
Isoprene 0.411 (0.282)h 0.203 (0.104) - 0.52 (0.01)g - -
Furan 0.325 (0.496) - - -
Pentadienes - - - - -
Cyclopentene - - - - -
HPALDs 0.406 (0.229) - - - - -
Benzene 0.275 (0.139) 0.302 (0.123) - 0.53 (0.07) - -
Monoterpenes 0.258 (0.164) - - - - -
Toluene 0.167 (0.091) 0.271 (0.138) - 0.32 - -
Ammonium 0.424 (0.261) - - - 0.083 (0.020) 0.245 (0.092)
Nitrate 0.436 (0.337) - - - 0.006 (0.002) 0.008 (0.000)
Chloride 1.07 (0.89) - - - 0.30 (0.02) 0.69 (0.14)
Sulfate 0.160 (0.115) - - - 0.027 (0.000) 0.063 (0.003)
OA 12.9 (6.3) - 3.67i - 1.6j 7.4j

BC 0.163 (0.141) - 0.75 - - -

aValues in parentheses represent one standard deviation.
bSupplement Table 13 in Akagi et al. [2011].
cThe EFs in Kudo et al. [2014] were derived from two plumes. The values in parentheses are the ranges of data.
dEF for acetone/propanal.
eEF for MVK/MACR.
fEF for MVK/MACR/crotonaldehyde.
gEF for isoprene/furan.
hEF for isoprene/furan/pentadienes/cyclopentene.
iThe average OA from Yokelson et al. [2009] (Table 3) from Fires 1 and 3.
jDerived from EF(OC) times a factor of 1.64 [Canagaratna et al., 2015].

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025040

LIU ET AL. AGRICULTURAL FIRES IN THE SE US 7395



3.1.3. Emissions of Nitrogen Compounds
BB is an important atmospheric source of nitrogen species, primarily NH3 and NOx [Crutzen and Andreae,
1990;McMeeking et al., 2009; Burling et al., 2010]. Freshly emitted nitrogen-containing compounds measured
during SEAC4RS are HCN, CH3CN, NOx, nitrate, and ammonium. Another important nitrogen species not mea-
sured during SEAC4RS could be HONO. Significant direct emissions of HONOwere reported at ~5–33% of NOx

from BB of various fuel types [Yokelson et al., 2007, 2009; Burling et al., 2011; Akagi et al., 2012, 2013] and at
~9% of NOx for Asian rice straw burned in lab [Stockwell et al., 2015]. Thus, HONO emission could be an impor-
tant source of OH radicals. HCN and CH3CN are widely recognized as useful BB tracers [Li et al., 2000; de Gouw
et al., 2003; Li et al., 2003]. The variability in HCN emissions is significant over a broad range of fuel types [Akagi
et al., 2011]. HCN from crop residue fires has previously been measured in the laboratory and in field studies
in Mexico [Christian et al., 2003; Akagi et al., 2011; Stockwell et al., 2014]. These measurements show that the
average EF(HCN) for SEAC4RS rice straw fires is the largest among these crop residue fires with a value of 0.610
±0.479g/kg (Table 5). This EF(HCN) is also slightly larger than those for other types of BB except forest fires and
peat as reviewed in Akagi et al. [2011]. In general, airborne and ground-based EF(HCN) for pine/conifer fuels
show a strong negative correlation with MCE over a wide range of 0.85–0.96, suggesting that HCN is primarily
released from smoldering combustion [Akagi et al., 2013]. By contrast, no statistically significant linear depen-
dence of airborne EF(HCN) on MCE was detected in this work (Table 4). Airborne HCN EFs measured in some
other studies of “nonpine” ecosystems, e.g., African savanna fires [Yokelson et al., 2003], are also effectively inde-
pendent ofMCE. The emission of CH3CN is lowest among all the nitrogen-containing species (Table 3). The aver-
age EF(CH3CN) reported here is smaller than those reported in the literature for crop residues (Table 5),
although not statistically significant. The EF(CH3CN) for individual fires ranges from 0.0281 to 0.456g/kg and
is weakly correlated with MCE (Table 4). The study-averaged ER of ΔCH3CN/ΔHCN is 0.22± 0.20, smaller than
previous laboratory and field measurements of 0.30–0.56 for a wide range of nonboreal [Christian et al., 2003;
Yokelson et al., 2008; Crounse et al., 2009; Yokelson et al., 2009] and boreal [Simpson et al., 2011] fuel types.

In this study, the average EF(NO2), 2.02±0.80g/kg, is approximately 8 times the average EF(NO), 0.251±0.211g/kg.
This NO2/NO ratio, largely controlled by photostationary state, is the largest among the crop residue studies
listed in Table 5. Since NO and NO2 are rapidly interconverted, it is also useful to report an EF for “NOx as
NO.” The EF(NOx) of this study is 1.58 ± 0.63 g/kg, the smallest among the studies listed in Table 5. As for
the EF(NOx) versus MCE plots, although some laboratory and field measurements have shown that NOx is
emitted primarily via flaming combustion [Lobert et al., 1991; Yokelson et al., 1996; Goode et al., 2000], neither
EF(NO), EF(NO2), nor EF(NOx) from SEAC4RS correlates with MCE (Table 4). Instead, NOx emissions might have
been driven more by fuel nitrogen content than MCE, as found in Burling et al. [2010], Andreae and Merlet
[2001], and McMeeking et al. [2009]. However, since SEAC4RS agricultural fires emitted less NOx and CH3CN
but more HCN, it is likely that the emissions of gaseous nitrogen compounds depend not only on the total
fuel nitrogen but also the composition of N-containing precursors in fuel and burning conditions [Becidan
et al., 2007; Bai et al., 2013]. Gaseous HNO3 was not significantly elevated within most of the fire plumes.
Other studies have reported that HNO3 did not correlate with elevated CO within fresh or aged BB smoke
[Yokelson et al., 2009; Alvarado et al., 2010]. The reason for this may be that HNO3 is converted efficiently
to nitrate due to the availability of NH3 in the plumes, as indicated by high ammonium emissions. The evolution
of nitrogen species will be discussed in detail in section 3.2.2.

Particulate nitrate and ammonium are often minor components of the emitted nitrogen species. Akagi et al.
[2011] reviewed the emissions of these particles in various BB types. The observed nitrate EFs ranged from
0.016 to 0.14 g/kg, and those of ammonium were smaller than 0.006 g/kg.McMeeking et al. [2009] also found
particulate nitrate and ammonium to account for only a small fraction of the fuel nitrogen for 33 different U.S.
plant species and rice straw collected from Taiwan burned in a lab study. Their study-averaged values of EF
(nitrate) and EF(ammonium) for rice straw were 0.04 ± 0.03 g/kg and 0.26 ± 0.16 g/kg, respectively. Hayashi
et al. [2014] also observed very low emissions of nitrate and relatively higher emissions of ammonium under
both dry andmoist conditions (Table 5). During SEAC4RS, fresh nitrate and ammoniumemissions with average
EFs of 0.436 ± 0.337 g/kg and 0.424 ± 0.261 g/kg were measured, respectively, which are larger than the exist-
ing literature values. In addition, both nitrate and ammonium exhibited enhancement in aged smoke. If the
initial emitted and subsequently produced nitrate and ammonium are summed, both nitrate and ammonium
would have even higher emissions than the lab studies ofMcMeeking et al. [2009] and Hayashi et al. [2014].
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3.1.4. Emissions of Gas Phase Nonmethane Organic Compounds (NMOCs)
Among the reported gas phase NMOCs, rice straw fires had the highest average EFs for formaldehyde, hydro-
xyacetone, methanol, and acetaldehyde. In previous studies, formaldehyde is consistently one of the most
abundant OVOCs emitted by fires [Goode et al., 2000; Yokelson et al., 2003]. The field burning of U.S. rice straw
produced significant amounts of formaldehyde with an average EF of 2.63 ± 1.05 g/kg, which is the largest EF
among all types of BB shown in Table 5 and in Akagi et al. [2011], except charcoal making.

Hydroxyacetone has both biogenic and BB sources. It is the precursor of other atmospherically important species,
such asmethyglyoxal, formic acid, and acetic acid [Grosjean et al., 1993; Butkovskaya et al., 2006]. Hydroxyacetone
emissions have recently been reported for both field and laboratory fires from various fuels [Christian et al., 2003;
Akagi et al., 2011; Yokelson et al., 2013; St. Clair et al., 2014]. Christian et al. [2003] reported very large quantities of
hydroxyacetone, 21–34g/kg, from burning Indonesian rice straw in piles under smoldering combustion (a com-
mon practice in Indonesia and East Asia) with a MCE of ~0.81. Rice straw burned in FLAME-4 also had a relatively
high average EF (1.33±1.47g/kg) for the SEAC4RS-averaged MCE value. The fires sampled during the SEAC4RS
also produced high amounts of hydroxyacetone with an average EF of 2.06±0.89g/kg.

In SEAC4RS and previous studies, methanol was consistently one of the most abundant OVOCs emitted by
crop residue fires and other types of BB [Christian et al., 2003; Kudo et al., 2014; Stockwell et al., 2014, 2015].
The SEAC4RS and the FLAME-4 lab-predicted EFs of methanol agree very well (Table 5).

Acetaldehyde plays an important role in the formation of PAN, O3, and HOx radicals and also has large effects
onmodeled smoke plume chemistry [Singh et al., 1995; Trentmann and Andreae, 2003; Trentmann et al., 2005].
The annual emission of acetaldehyde from BB has been estimated as 3 Tg [Millet et al., 2010]. As the principal
carbonyl precursor of PAN (44% of the global source) [Fischer et al., 2014], acetaldehyde emitted from BB
likely has an important impact on the regional and global PAN budget. Burning crop residues emits relatively
large amounts of acetaldehyde relative to other types of fuel. Among the five types of crop residues burned in
FLAME-4, sugar cane and rice straw had the largest acetaldehyde EFs [Stockwell et al., 2015]. We report an
average EF (acetaldehyde) of 1.37 ± 0.80 g/kg, which is smaller than that measured in FLAME-4 [Stockwell
et al., 2015], though the uncertainties are large (Table 5). The impact of acetaldehyde emissions on PAN for-
mation in aged smoke is studied in detail by the LPCS-REAM model and is discussed in section 3.3.

Other quantified organic gases include (in order of abundance by mass): acetone/propanal, MVK/MACR/cro-
tonaldehyde, isoprene/furan/pentadienes/cyclopentene, isoprene hydroperoxyaldehydes (HPALDs), ben-
zene, monoterpenes, CH3CN, and toluene. Among these species, the OVOCs are relatively abundant initial
emissions from BB. HPALDs are autoxidation products of isoprene via 1,6-H-shift isomerizations of peroxy
radicals produced from OH+ isoprene [Crounse et al., 2011, 2013]. Their production is expected to be impor-
tant in low-temperature combustion chemistry as occurs in BB [Cox and Cole, 1985; Rogge et al., 1991]. The
first direct emissions of HPALDs from BB were measured during SEAC4RS, with an average EF of 0.406
± 0.229 g/kg. For those overlapping species in Table 5, the average EFs of our field study and those predicted
from the FLAME-4 EF versus MCE plot are shown to agree well, considering the differences in fuel and burn-
ing conditions. There were larger discrepancies in the NMOC EFs derived in this work as compared to those in
Kudo et al. [2014], although the average MCEs were similar. In general, Kudo et al. [2014] obtained higher EFs,
perhaps because of the difference in the composition of wheat and rice straw.

The emissions of all the NMOCs are negatively correlated with MCE (Table 4), meaning they are primarily
emitted from smoldering combustion. However, variability in the relationship between EFs and MCE does
exist. MVK/MACR/crotonaldehyde, toluene, monoterpenes, and HPALDs correlate reasonably well with
MCE (r2 from 0.57 to 0.68). On the other hand, acetone/propanal andmethanol are the NMOCs that were least
dependent on MCE, both with r2 = 0.08. The acetone/propanal and MCE correlation is reported for the first
time here. For methanol, unlike in this study, good correlation (r2 from 0.68 to 0.90) between the EF (metha-
nol) and MCE has been reported in previous lab and field studies focusing on the fuels burned in prescribed
and savanna fires [Christian et al., 2003; Yokelson et al., 2003; Burling et al., 2010, 2011].
3.1.5. Emissions of Carbonaceous Aerosols
Open BB, as a primary source of carbonaceous aerosols, contributes one third of the global BC and two thirds
of the global POA budget [Bond et al., 2004]. BC is known to be the most absorbing aerosol in the visible
wavelengths in the atmosphere [Bond et al., 2013]. Recent studies have shown that BB OA contains
substantial amounts of light-absorbing BrC [Kirchstetter et al., 2004; Chen and Bond, 2010; Lack et al., 2012;
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Saleh et al., 2013; Washenfelder et al.,
2015]. EFs and chemical properties of
BC and OC from BB are quite variable
and uncertain [Reid et al., 2005]. Here
we examine the first suite of field
measurements of BC and OA emitted
from agricultural fires. We also use
the PSAP data to infer the existence
and absorption properties of BrC.

The EFs of BC in this work vary between
0.024 and 0.521g/kg, with an average
of 0.160±0.115g/kg (Table 3). This
average value is ~5 times smaller than
that derived from field measurement
of EC from Mexican crop residue burn-
ing (Table 5) and is also smaller than
the EF(BC) reviewed in Akagi et al.
[2011] for all types of BB except char-
coal making. Previous studies have
shown that BC is a flaming combustion

product [Christian et al., 2003; Reid et al., 2005]. However, our BC EFs are essentially independent of MCE (Table 4).
Therefore, given the complexity and variability of biomass combustion, the variance of EF(BC) was not attributable
simply to the relative amount of flaming or smoldering for the SEAC4RS agricultural fire measurements.

OA comprised the largest chemical component of fine particles in smoke from the sampled agricultural fires,
with an average EF of 12.9 ± 6.3 g/kg (Table 3). Yokelson et al. [2009] and Hayashi et al. [2014] observed signif-
icantly less OA emissions from crop residue fires (Table 5). Contrary to BC, OA is mainly produced by smolder-
ing combustion [Reid et al., 2005]. OA EFs are negatively correlated with MCE (r2 = 0.26), as expected (Table 5).
This correlation is weaker than some previously observed average EF(OC) and MCE correlations with r2 = 0.36
for various plant species burned in lab [McMeeking et al., 2009; Jolleys et al., 2014]. It is possible that some of
the variance in these OA EFs could be due to fire variability. The strength of the relationship between EF(OA)
andMCE can also be degraded by gas-particle partitioning effects. POA emitted from fires has been observed
to be semivolatile [Donahue et al., 2006;May et al., 2013]. Thus, although the samples used to calculate EF(OA)
are relatively fresh, the POA may still have gone through variable gas-particle partitioning related to dilution
and temperature changes as the smoke mixes with background air.

As shown in Figure 4, the calculated PSAP AAEs range from 2.2 to 4.2 near the 15 fire sources, higher than the
average AAE of the background air just outside of the plumes (1.60 ± 0.40). The average AAE for the agricul-
tural fires, 3.34 ± 0.62, is similar to the AAEs of 3.5 to 4.0 for the fresh plumes of a large wildfire, the Rim Fire,
sampled during the same campaign [Forrister et al., 2015]. Corresponding to the elevated AAEs, derived BrC
absorption at 365 nm normalized by ΔCO was significantly elevated in all 15 fresh agricultural fire plumes,
also shown in Figure 4. In contrast, the absorption at 365 nm contributed by freshly emitted BC was lower
or 15%–93% of that contributed by BrC. The average fresh Δbap,BrC(365)/ΔCO and Δbap,BC(365)/ΔCO of this
study are 0.223 ± 0.053Mm�1 ppbv�1 and 0.078 ± 0.036Mm�1 ppbv�1, respectively. Direct measurements
of light absorption spectra from liquid extracts of aerosols collected on 20 teflon filters were also available
for these agricultural fires. After applying a factor of 2 for conversion of light absorption from liquid solution
to particles [Liu et al., 2013, 2015;Washenfelder et al., 2015], the average Δbap,BrC(365)/ΔCO determined from
liquid extracts is 0.25 ± 0.27Mm�1 ppbv�1, which agrees with the average derived from PSAPmeasurements.
The uncertainty of the extract-derived Δbap,BrC(365)/ΔCO by particles is estimated to be at least ~45% by
combining the uncertainties in the conversion factor [Liu et al., 2013] and the measurements. The real uncer-
tainty is likely larger because the background absorption near the plume often cannot be obtained due to the
low sampling frequency of 5–7min. By performing orthogonal distance regression for the sum of bap,BrC(365)
determined from liquid extracts and bap,BC(365) based on PSAPmeasurements and an AAEBC of 1 versus total
PSAP absorption at 365 nm, we obtained a slope of 0.81 ± 0.09 and an intercept of�0.74 ± 3.29 (Figure S5). A
slope near 1 and a relatively good correlation (r= 0.91) indicate a reasonable closure between extract-derived

Figure 4. Excess PSAP light absorption coefficient at 365 nm normalized by
excess CO and corresponding absorption Ångström exponent (AAE) in
fresh smoke. BrC absorption was 2–5 times that of BC at 365 nm.
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BrC plus PSAP-derived BC and PSAP absorption for the agricultural fire plumes, although there are uncertain-
ties associated with the assumptions made. Forrister et al. [2015] determined from liquid extracts a similar
fresh Δbap,BrC(365)/ΔCO of 0.25Mm�1 ppbv�1 in the very large plume of the Rim Fire. In this study, the rela-
tively good correlation (r2 = 0.53) between Δbap,BrC(365)/(ΔCO+ΔCO2), analogous to EFs but in a unit of
Mm�1 ppb�1, and MCE indicates that BrC was mainly a product of smoldering combustion.

3.2. Plume Evolution

Among the 15 agricultural fires, 13 included at least one long-axis penetration providing samples of both the fresh
and aged plume (Table 2). To study the evolution of reactive species, we selected all seven fires that provided
aged samples older than 20min: Fires 1, 3, 4, 12, 13, 14, and 15. As discussed in section 2.3, the downwind changes
discussed here were driven mainly by chemical and physical evolution rather than source changes. However,
since theΔBC/ΔCO exhibited an increasing trend for Fire 12 (Figure S3), it is possible that the downwind evolution
of the species in this fire discussed here reflected both source changes to some extent and plume aging.

WhenusingdownwindNEMRs to illustrate evolution,weplot all available data for a singlefire together to show
thegeneral trend even if these datawere frommultiple penetrations through the fire. The 1σ uncertainty in the
estimatedage is basedon thevariability ofwinddirectionandwind speed.AbsoluteuncertaintiesofNEMRsare
a result of error propagation frommeasurement uncertainties. The uncertainties of estimated age and NEMRs
(or ERs) are only shown for one fresh and one aged measurement for each fire as examples. Linear or polyno-
mial fits were performed to theNEMRs versus smoke age plot as a simple representation of the evolution trend
and also an estimation of the final NEMR at the age of the last measurement. The species we focus on include
O3, reactive nitrogen species, OA, and BrC.
3.2.1. Ozone
In Figure 5,ΔO3/ΔCO for the seven aged fires is plotted versus the estimated smoke age. The initialΔO3/ΔCO is
sometimes negative because the background O3 can be depleted by fast reaction with freshly emitted NO.
Negative initial ΔO3/ΔCO has been frequently observed in fresh BB plumes [Yokelson et al., 2003; Akagi et al.,
2012]. In general, rapid O3 formation was observed in six out of seven agricultural fires. The only exception is
Fire 3, inwhich the less-intense ultraviolet light in late afternoon likely retarded thephotochemistry (local flight
times are shown in Table 2). ΔO3/ΔCO for the other six fires increased from near zero to 0.03–0.05 in ~30min
after emission. For Fires 4, 14, and 15, the ratio reached over 0.10 or more in about 1 h. Such a formation rate
is comparable to that observed in prescribed fires in South Carolina [Akagi et al., 2013] and tropical BB plumes
as reviewed in Akagi et al. [2011] and faster than those observed in some midlatitude and high-latitude BB
plumes [Goode et al., 2000; Alvarado et al., 2010; Akagi et al., 2012].
3.2.2. Reactive Nitrogen Species
NOx emitted fromBB can be converted to HNO3, nitrate, peroxyacyl nitrates (PANs), alkyl nitrates, and other per-
oxy nitrates. Figure 6 shows the evolution of excess NO, NO2, PAN, HNO3, and nitrate normalized by measured
excess NOy for the selected seven fires. These species constituted ~0.82–0.96 of the total measured NOy. This
fraction did not show significant evolution during aging when compared to combined measurement uncer-
tainty. Several organic nitrates produced by the first and second generation isoprene oxidation such as isoprene
hydroxynitrates and MVK/MACR nitrates were also measured at high frequency but no significant elevation or
evolution was seen in the plumes. Although not discussed in this section, their observations will be used to
evaluate model performance in section 3.3. Other reactive nitrogen species were either not measured (such
as HONO) or were measured at a lower time resolution so that such an evolution analysis is limited.

Immediately after emission, NOx constituted 0.69–0.82 of the total reactive nitrogen (NOy). The ΔNOx/ΔNOy

ratios decreased with smoke age. Similar to the trend of ΔO3/ΔCO, the conversion of NOx to other reactive
nitrogen species was slow in the late afternoon smoke plume of Fire 3. The decrease of ΔNOx/ΔNOy was
much faster in the other five fires in which NOx measurements were available. In these five plumes, NOx loss
ranged from ~26% to ~56% in about 30min.

Figure 6 also shows the growth in ΔPAN/ΔNOy. For all of the cases but Fire 3, the ΔPAN/ΔNOy ratios increased
rapidly from less than 0.05 to ~0.3 in ~1 h. Such a PAN formation rate is similar to that observed in a boreal
smoke plume (Lake McKay) during the Arctic Research of the Composition of the Troposphere from Aircraft
and Satellites (ARCTAS-B) campaign [Alvarado et al., 2010] and higher than in a Yucatan BB plume [Yokelson
et al., 2009] and in the chaparral fire in California [Akagi et al., 2012]. Based on the increase in ΔPAN/ΔNOy,
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PAN accounted for 51% to 74% of the loss of NOx on a molar basis at the end of our aging measurements on
each fire. No significant increasing trend was observed for HNO3. As the plumes aged, HNO3 concentrations
in general remained near background level. Although NH3 was not measured in this campaign, significant
amounts of NH3 have been observed in other BB studies (Table 5), including crop residue burning [Akagi et al.,
2011; Stockwell et al., 2014]. For example, Stockwell et al. [2014] measured an NH3 EF of Asian rice straw as high
as 1.12 ± 0.77 g/kg, adjusted to the SEAC4RS-averaged MCE. Therefore, HNO3 formed from NO2 oxidation
might have been converted efficiently to nitrate due to the availability of NH3 and aerosol surface area in
the plumes. The trend in Δnitrate/ΔNOy is most similar to that of ΔPAN/ΔNOy, suggesting a rapid formation
of nitrate particles in the first hour of aging. For the fires including Fires 1, 3, 4, 12, and 14, while ΔPAN/ΔNOy

andΔnitrate/ΔNOy increased at slightly different rates, the excess PAN and nitrate of the last fewmeasurements
accounted for roughly the same fraction of the excess NOy. This suggests that during the ~1h aging, approxi-
mately equal amounts of initial NOx emissions were converted to PAN and to nitrate. For Fires 13 and 15, a lar-
ger fraction of NOx was converted to nitrate than to PAN, with nitrate dominating the downwind NOy budget.
Our 1 h Δnitrate/ΔPAN ratios equal to or slightly larger than 1 are the largest values reported to date. On a time
scale of several hours, Akagi et al. [2012] and Alvarado et al. [2010] both observed an average Δnitrate/ΔPAN
ratio of ~0.5 in the chaparral fire in California and in boreal forest fire plumes in Canada, respectively. It is also
possible that PAN formation becomes increasingly dominant over HNO3/nitrate formation further downwind,
as simulated byMason et al. [2001], so that our Δnitrate/ΔPAN ratio may decrease as the plumes get older than
1h. PAN and nitrate together accounted for almost all NOx loss, ranging from 100% to 140% if based on
Δnitrate/ΔPAN, ΔPAN/ΔNOy, and ΔNOx/ΔNOy ratios. However, such an estimate is uncertain since ΔNOy is
not a strictly conserved tracer in plumes. Wewill further discuss the conversion of NOx to PAN and HNO3/nitrate
and the branching between them in section 3.3 using our model simulations.

Figure 5. Evolution of ozone in the seven aged plumes. Data were fit to a linear trend line. Vertical error bars are a result of measurement uncertainties. Only error
bars of one fresh and one aged measurement are shown as examples for each fire. Horizontal error bars represent the 1σ uncertainty in the estimated age based on
the variability of wind direction and wind speed. Note that the downwind evolution of Fire 12 might reflect both source changes to some extent and plume aging.
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3.2.3. Organic Aerosol and Brown Carbon
The changes in ΔOA/ΔCO were also measured for the seven aged fires and were found to vary from fire to
fire. The net formation of SOA may contribute to higher downwind ΔOA/ΔCO, while the net evaporation
of semivolatile OA may decrease OA mass during dilution and thus reduce ΔOA/ΔCO. The ratio may also stay
approximately constant despite active oxidation chemistry, if the different processes approximately cancel in
terms of their changes of OA mass [Cubison et al., 2011]. For Fires 12, 13, and 15 sampled on 23 September a
possible net increase in ΔOA/ΔCOmight have been present (Figure S6). However, no significant increase was
seen for the other fires. To represent the overall ΔOA/ΔCO evolution, the changes in ΔOA/ΔCO for all the
seven fires were compiled in a single box and whisker plot (25th–75th and 10th–90th percentiles), as shown
in Figure 7a. Within the first 15min, the median [ΔOA/ΔCO]t/[ΔOA/ΔCO]0 is 0.96. In downwind plumes the
median [ΔOA/ΔCO]t/[ΔOA/ΔCO]0 varies between 0.85 and 1.3 and is not significantly different from 1 or
the freshest [ΔOA/ΔCO]t/[ΔOA/ΔCO]0. The fact that no significant change in the study-averaged ΔOA/ΔCO
was observed for the first ~1.2 h aging does not permit strong conclusions about consistent SOA formation
in the plumes. Capes et al. [2008], Cubison et al. [2011], Hecobian et al. [2011], Akagi et al. [2012], Jolleys et al.
[2012], and Forrister et al. [2015] also observed nearly constant ΔOA/ΔCO with changes smaller than ~20%
during aging in open BB plumes. In contrast, within a fire plume over the Yucatan, Yokelson et al. [2009]
observed a significant enhancement in ΔOA/ΔCO with a growth factor of 2.3 ± 0.85 at 1.4 h of aging. For
60 BB plumes in South Africa, Vakkari et al. [2014] observed that aged daytime ΔOA/ΔCO was 4 times that
of unprocessed nighttime ΔOA/ΔCO. Laboratory experiments have reported OA enhancement ratios
between 0.75 and 3 as a result of photochemical oxidation after a few hours to a few days of exposure to

Figure 6. Evolution of reactive nitrogen species in the seven aged plumes. Data were fit to a linear or polynomial trend line. Vertical error bars are a result of
measurement uncertainties. Only error bars of one fresh and one aged measurement are shown as examples for each fire. The 1σ uncertainty in the estimated
age is same as that shown in Figure 5. NO2 measurements are not available for Fire 13. Note that the downwind evolution of Fire 12 might reflect both source
changes to some extent and plume aging.
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typical atmospheric OH levels [Grieshop et al., 2009; Hennigan et al., 2011; Ortega et al., 2013]. The reasons for
the observed variability in net SOA formation from BB plumes are not well understood.

To investigate the chemical transformations of OA, we analyzed elemental ratios including oxygen-to-carbon
(O/C) and hydrogen-to-carbon (H/C) ratios using data from the aerosol mass spectrometer (AMS) [Aiken et al.,
2008; Canagaratna et al., 2015]. Figure 8 shows the evolution of these two elemental ratios and also back-
ground ratio values for six fires. Elemental ratios for Fire 12 were not available. The measurement uncertain-
ties of O/C and H/C are 28% and 13%, respectively, based on Canagaratna et al. [2015]. The background H/C
ratios were in the range of 1.5–1.7 and were always smaller than the H/C ratio near the burning sources,
which were generally between 1.6 and 1.8. In contrast, the background O/C ratios (0.7–0.9) were higher than
the O/C ratios for POA from the agricultural fires (0.3–0.5), which are similar to the values observed in BB
plumes over the Mexico City basin [DeCarlo et al., 2008]. Lower O/C and higher H/C values than background
values suggest that POA produced by crop residue burning contained more reduced and less oxidized com-
pounds than background OA. For all six plumes, a consistent increase in the O/C ratios and a decrease in the
H/C ratios associated with aerosol aging were observed, although at different rates. Processes that could
explain the observed elemental ratio trends include (1) mixing with background OA, (2) chemical processing,
and (3) the preferential evaporation of more reduced species. Although mixing with background OA would
eventually increase O/C and decrease H/C toward the background values, this is likely not the dominant
effect. For five out of the six cases, O/C ratios increased from around ~0.4 to 0.6–0.8 in less than 1 h. Since
the measurements indicated that the excess OA concentrations in plumes were well beyond the background
OA concentrations throughout this period, mixing alone could not have contributed enough background OA
to account for such a rapid O/C increase (Figure 12b, as will be discussed in section 3.3.4). When combined
with the approximately constant [ΔOA/ΔCO]t/[ΔOA/ΔCO]0 ratios, the observations in O/C and H/C ratios
show that the addition of oxygen must be offset by the loss of carbon during aging so that both chemical
processing and evaporation were contributing. Rapid O3 formation also serves as evidence of photochemical
activity within the plumes. Chemical processing could change elemental ratios by the addition of SOA of
higher O/C ratios or the heterogeneous oxidation of POA. Not surprisingly, the changes of O/C and H/C ratios
were slowest in the plume of Fire 3, which agrees with the overall slow photochemistry. This provides further
evidence that, in general, SOA formation was active on this time scale and that not all the O/C changes can be
explained by differential evaporation.

BrC in POA and SOA in BB plumes may also evolve. The aging effects on the light-absorbing properties of
organic carbon vary among studies perhaps due to different aging times and oxidation conditions [Adler
et al., 2011; Saleh et al., 2013; Zhong and Jang, 2014; Forrister et al., 2015]. To investigate the influence of aging
on short-wavelength light absorption, we plotted box and whisker plot of the changes in Δbap,BrC(365)/ΔCO
for the seven fires (Figure 7b). Similar to Figure 7a, [Δbap,BrC(365)/ΔCO]t/[Δbap,BrC(365)/ΔCO]0 was used to
represent Δbap,BrC(365) evolution. In Figure 7b, the downwind [Δbap,BrC(365)/ΔCO]t/[Δbap,BrC(365)/ΔCO]0
exhibits slightly higher median values and upper limits than the fresher samples less than 15min old. The
slight increase in Δbap,BrC(365))/ΔCO suggests that the aged aerosols up to ~1.2 h old were more absorptive
than fresh OA. This could possibly result from SOA formation, as implied by the O/C increase. Other processes

Figure 7. Box and whisker plot of (a) ΔOA/ΔCO change and (b) Δbap,BrC(365)/ΔCO change in the seven aged plumes
(boxes, 25th and 75th percentiles; whiskers, 10th and 90th percentiles; solid horizontal lines, medians; and the two thick
lines mean that only one data point is available for the corresponding age). Dashed horizontal lines represent a constant
value of 1, i.e., no enhancement.
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could also be occurring, such as the loss of volatile BrC and photobleaching. On a similar time scale, Saleh
et al. [2013] also reported that aged OC was more absorptive due to SOA formation in a smog chamber
experiment. Zhong and Jang [2014] reported that chromophore formation and sunlight bleaching governed
the change in the absorption of wood smoke aerosol. During a diurnal cycle, OA absorption was first
enhanced by chromophore formation in the morning and then decreased by sunlight bleaching in the after-
noon. On a longer time scale, Forrister et al. [2015] demonstrated that BrC emitted from wildfires was largely
unstable and decayed in the plume with a half-life of 9 to 15 h. Therefore, our measurements in agricultural
fire plumes may have captured BrC evolution in the early stage before its loss exceeded possible
secondary formation.

3.3. Model Simulations

Understanding the rapid chemical evolution in fire plumes is critical for evaluating the impact of agricultural
fires on regional air quality, atmospheric composition, and climate. Here we use the LPCS-REAM model to
simulate the evolution of O3, PAN, HNO3, nitrate, radicals, SOA, and the O/C ratios within young agricultural
fire plumes.

Figure 9 shows the simulated COmixing ratios using the best fit dilution coefficient (Ky), one half of best fit Ky,
and twice of best fit Ky, along with the observed COmixing ratios. Despite the assumptions made for a single
Ky value and the method of observation-model comparison, the simulated COmixing ratios using the best fit
Ky reasonably represented the dilution trend when compared to the observations. The overall successful
agreement enables us to further study the chemical evolution in the fire plumes.

Figure 8. Evolution of elemental ratios in particulate matter as measured by the AMS in six aged plumes (not available for
Fire 12).
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3.3.1. Ozone
Figure 10 shows the evolution of the enhancement ratios of O3 for the five selected cases. With the best fit
dilution coefficients, the model can reasonably simulate ΔO3/ΔCO to within ~30% in general. To quantify
the photochemical O3 production in an agricultural fire plume, we used the simulated results to calculate
ozone production efficiency (OPE), defined as the number of O3 molecules produced per number of NOx

molecules oxidized [Liu et al., 1987; Lin et al., 1988; Trainer et al., 1993; Olszyna et al., 1994]. In this study,
we computed the OPEs during 1 h evolution by dividing the number of O3 molecules produced by the num-
ber of NOx molecules oxidized to PAN and HNO3 + nitrate, given that PAN and HNO3+ nitrate accounted for
most of themeasured NOx oxidation products (Figure 6). As shown in Table 6, the OPEs are in a range of 6.0 to
9.8 for the five cases. OPE values on the time scales of 0.5–4 days were estimated to be 5–17 for BB activities in
Southeast Asia [Kondo et al., 2004], South and Central Africa [Marion et al., 2001; Yokelson et al., 2003],
Australia [Shirai et al., 2003; Takegawa et al., 2003], and western U.S. [Baylon et al., 2015]. The OPEs for the
agricultural fires are in the lower end of the previously reported range. However, the OPEs in our cases will
likely evolve as age increases beyond 1 h. The thermal decomposition of PAN could also further promote
O3 production after the first 1 h.
3.3.2. Reactive Nitrogen Species
The simulated enhancement ratios of the major NOx oxidation products, PAN, HNO3, and nitrate, are shown
in Figure 11. Note that the nitrate observations shown are the total nitrate measured by AMS, while the mod-
eled nitrate represents the sum of initial emissions plus those originating from HNO3 condensation. As the
AMSmeasurements indicated that the nitrate in all the fire plumes in this study wasmainly composed of inor-
ganic nitrate (>90%), comparing the evolution of measured total nitrate with that of the modeled inorganic
nitrate is reasonable. Table 6 shows the ratio between NOx oxidized to PAN and that oxidized to PAN plus
HNO3 + nitrate. It can be seen from Figure 11a that the model, in general, underestimated the formation of
PAN by up to ~50% of the observed ΔPAN/ΔCO. The simulated HNO3 was generally lower than the observed
HNO3 as the simulated ΔHNO3/ΔCO decreased more rapidly with age than the observations (Figure 11b). For

Figure 9. COmixing ratio versus smoke age for the five selected cases. Green, red, and blue lines are for the slow, best fit, and fast plume dilution rates. Circles are the
measuredmixing ratios, with the horizontal error bars showing the uncertainty in the estimated age. Crosses are background CO concentrations outside the plumes.

Figure 10. Enhancement ratios ofΔO3 to ΔCO versus smoke age for the five selected cases. Green, red, and blue lines are for the slow, best fit, and fast plume dilution
rates. Circles are the measured enhancement ratios, with the vertical error bars showing the uncertainty in the measurement. The uncertainty in the estimated age is
not shown here but is same as in Figure 9.
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nitrate, themodel performance varied from case to case. For Fire 3 Pass 2 and Fire 4 Passes 1 and 2 (Figure 11c),
the increase of Δnitrate/ΔCO was overestimated by the model by up to ~50%. In these three cases, the under-
estimation of HNO3 and the overestimation of nitrate imply that the model exaggerated the gas-to-particle
deposition of HNO3. In the other two cases, Fire 15 Passes 1 and 3, the model underestimated nitrate, although
within measurement uncertainties. However, more downwind nitrate data are needed for better evaluation.
Since modeling the partitioning between HNO3 and nitrate is limited by the simplified treatment of HNO3

deposition, it is also useful to compare the observed and the simulated sum of HNO3+nitrate. As also shown in
Figure 11b, the model made reasonable predictions for total HNO3+nitrate for the first three cases within mea-
surement uncertainties but underestimated the concentrations of total HNO3+nitrate for the last two cases,

Table 6. Summary of the Modeled Evolution Characteristics at an Age of 1 h: Ozone Production Efficiency (OPE), the Ratio
of NOx Oxidized to PAN to That Oxidized to PAN Plus HNO3 + Nitrate (P_PAN/(P_HNO3 + P_PAN)), and
Radical Concentrations

Case OPE
P_PAN/(P_HNO3

+ P_PAN) OH (molecules cm�3) HO2 (molecules cm�3) RO2 (molecules cm�3)

Median Average Median Average Median Average
Fire 3 Pass 2 6.0 0.65 5.6 × 105 5.3 × 105 1.5 × 108 1.4 × 108 6.7 × 107 6.6 × 107

Fire 4 Pass 1 7.0 0.66 1.7 × 107 1.5 × 107 1.2 × 109 1.1 × 109 3.8 × 108 4.1 × 108

Fire 4 Pass 2 9.8 0.50 1.9 × 107 1.8 × 107 1.0 × 109 1.0 × 109 2.8 × 108 2.9 × 108

Fire 15 Pass 1 6.3 0.39 1.5 × 107 1.7 × 107 2.5 × 108 3.3 × 108 8.9 × 107 1.1 × 108

Fire 15 Pass 3 7.2 0.62 7.5 × 106 6.7 × 106 3.9 × 108 3.5 × 108 1.4 × 108 1.3 × 108

Figure 11. Enhancement ratios of (a)ΔPAN to ΔCO, (b)ΔHNO3 to ΔCO and (ΔHNO3 +Δnitrate) toΔCO, and (c) Δnitrate to ΔCO versus smoke age for the five selected
cases. Circles (solid circles for single NOy species and open circles for HNO3 by CIMS + nitrate by AMS) are the measured enhancement ratios, with the vertical error
bars showing the uncertainty in the measurement. The uncertainty in the estimated age is not shown here but is same as in Figure 9. The red lines (solid and dashed)
are base model results for the best fit dilution rates. The blue (solid) and green (solid and dashed) lines are the results of the base model with estimated HONO (using
FLAME-4 EF) and diacetyl (using FLAME-4 EF and one half of FLAME-4 EF) initial emissions.
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although again more downwind nitrate data would be useful to better evaluate the model performance.
Several reasonsmay explain the disagreement. First, the highest initial emissions of nitrate near the fire sources
were not measured for the Fire 3 Pass 2 and Fire 4 Pass 1. The input of the freshly emitted nitrate was estimated
using the EF(nitrate) from other transects of the same fire and measured CO peak, which is a source of
uncertainty for downwind nitrate simulation. Second, errors in the modeled photochemistry, e.g., the modeled
OH concentration, could bias the HNO3+nitrate predictions.

The model output also includes other gaseous organic nitrate, including peroxypropionyl nitrate (PPN), per-
oxymetacryloyl nitrate, NO3CH2PAN, isoprene organic nitrates, carbonyl nitrates from NO3+ isoprene, methyl
nitrate, and C4- and C5-alkyl nitrates. According to the simulation, the sum of these gaseous organic nitrates
was elevated by 0.1–0.3 ppbv at an age of 1 h after accounting for dilution, which is minor compared to PAN
or HNO3+ nitrate formation. The available fast measurements of PPN and several organic nitrates produced
from isoprene oxidation showed that their formation was of similar magnitude as predicted by the model. In
addition, the organic nitrate fractions for all the fires in this study reported by the AMS were <10%, which
indicates that the enhancement of particulate organic nitrate was smaller than or similar to that of gaseous
organic nitrates. So it is likely that only a small amount of gaseous organic nitrates that formed, if any, parti-
tioned to the particle phase.

Several sensitivity simulations were performed to explore possible reasons for the underestimation of PAN
(all five cases) and HNO3 +nitrate (the last two cases) formation (Figure 11). Since the VOCs measured at sam-
pling rates ≥ 10 s (Table 1) likely missed the highest peak near fire sources and thus underestimated the initial
emissions from the fires, additional model runs were performed with enhanced VOC initial concentrations.
The results indicate that as expected, acetaldehyde had the most significant influence on PAN formation.
However, doubling the acetaldehyde concentration still cannot fully explain the observed rapid formation
of PAN (Figure S7). Simulations were conducted with additional unmeasured species, including HONO,
methylglyoxal, diacetyl, and MEK. Their initial emissions were scaled using FLAME-4 EFs (adjusted to
SEAC4RS MCE) and measured CO initial emissions [Stockwell et al., 2015]. The results showed that, with EFs
from FLAME-4, HONO (0.35 ± 0.13 g/kg) and diacetyl (0.92 ± 1.00 g/kg) were significant contributors to PAN
formation (Figure 11a), while methylglyoxal (0.36 ± 0.31 g/kg) was relatively less important (Figure S7). A com-
bined effect of adding HONO, diacetyl, and methylglyoxal is shown in Figure S7. Since PAN was very sensitive
to diacetyl, the large variability of EF(diacetyl) could lead to a large uncertainty in the simulated PAN.We found
that by reducing EF(diacetyl) by a factor of 2, the simulated ΔPAN/ΔCO agreed well with the observed values
(Figure 11a). The addition of initial HONO also promoted the modeled HNO3 + nitrate formation by ~30–70%
and resulted inbetter agreementswithobservations especially for the last twocases (Figure 11b). This suggests
that the baseline simulation is likelymissing some radical sources. Themeasured acetaldehyde,methylglyoxal,
and diacetyl were also found to be themain precursors of peroxyacetyl radicals in the plume of the small forest
understory fire in Georgia reported byMüller et al. [2016].
3.3.3. Radical Concentrations
BB greatly perturbs atmospheric oxidants. For example, the direct emissions and the secondary formation of
hydrogen peroxide, formaldehyde, and other aldehydes from BB can be significant sources of hydrogen oxi-
des (HOx) [Lee et al., 1998; Trentmann and Andreae, 2003; Yokelson et al., 2009; Müller et al., 2016]. In addition,
the oxidation of emitted organic species produces organic peroxy radicals (RO2), which can propagate HOx

and NOx radical chains and thereby generate O3 through subsequent photolysis of NO2 [Orlando and
Tyndall, 2012]. Although measurements of HOx or RO2 were not available, we present model estimates to
characterize the oxidants within the agricultural fire plumes. Table 6 lists the median and average concentra-
tions of OH, hydroperoxyl radical (HO2), and RO2 during the 1 h simulation. For Fire 3 Pass 2, the low modeled
radical concentrations agree with the overall slow photochemistry. For the other four cases, the average OH
and HO2 concentrations were in the ranges of 6.7 × 106 to 1.8 × 107molecules cm�3 and 3.3 × 108 to
1.1 × 109molecules cm�3, respectively. The photochemical production of the HOx family in the plume was
dominated by the photolysis of formaldehyde and the reaction of O1D+H2O (from O3 photolysis), which
on average accounted for ~60% and ~35%, respectively. As a comparison, Hobbs et al. [2003] inferred an
average OH concentration of ~1.7 × 107molecules cm�3 from the relative rates of decrease for a number
of chemical species in a savanna fire plume burned in South Africa in late morning. Yokelson et al. [2009]
measured a similar OH level of 1.14 × 107molecules cm�3 from a slightly aged plume that was 22–43min
old. Without being influenced by BB, the average noontime OH and HO2 concentrations at the surface in
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the southeastern U.S. measured in summer 2013 were ~2.4× 106 (0.1 ppt) and ~1.2× 109molecules cm�3,
respectively [Xiong et al., 2015]. In short, the photochemical environment in the plumes studied here has similar
levels of OH as those in Hobbs et al. [2003] and Yokelson et al. [2009] and generally higher OH, up to ~8 times
higher, than the surface ambient air studied in Xiong et al. [2015]. The magnitude of simulated HO2 in the
plumes is similar to that in Xiong et al. [2015]. In the case of RO2, the average modeled concentration ranged
from 6.6× 107 to 4.1× 108molecules cm�3, with methyl peroxy radical (CH3O2) accounting for ~30–50% of
RO2. As discussed before, the radical concentrations reported here likely represent a lower limit on actual radical
levels in the agricultural fire plumes.
3.3.4. SOA and O/C Ratios
SOA formation in the plumes was calculated by a simplified parameterization, which was proposed based on
urban pollution observations made in Mexico City [Hodzic and Jimenez, 2011] and Los Angeles [Hayes et al.,
2015], with parameters updated for biomass burning emissions based on Cubison et al. [2011]. Figure 12a
shows the modeled ΔOA/ΔCO versus plume age for the five individual passes. The simulated ΔOA/ΔCO is
the sum of the observed POA/ΔCO and the modeled SOA/ΔCO, where POA is treated as nonvolatile during
the ~1 h aging considered here. The model parameters ensured that ΔOA/ΔCO was generally conserved for
all the five cases after considering dilution, indicating that SOA formed in 1 h was insignificant compared with
POA emitted. Although there are discrepancies between the simulations and the observations, several factors
limit a detailed parameter optimization. First, for Fire 3 Pass 2, Fire 4 Pass 1, and Fire 15 Pass 3 in Figure 12a,
POA emissions were not measured but were estimated from the EF(OA)s of the corresponding fires obtained
from other transects, which may contribute to downwind discrepancies between modeled and observed
ΔOA/ΔCO. Second, the short aging time and the limited number of downwind samples also make it less
meaningful for a detailed parameter optimization. In our simulation, the EF of 0.013 g of the lumped SOA
precursor per gram of CO worked well for the agricultural fires, although a lower EF could have also worked
due to the insignificant SOA formation observed. Since the ratio of the average EF for the VOCs listed in
Table 3 to that of CO is already as high as 0.16 g g�1, this implies a net SOA yield of the order of 10%.

The evolution of the O/C ratio due to oxidation was also empirically estimated using equation (7). Note that
since POA accounted for themajority of themass of OA in the plumes, equation (7) can be regarded as a para-
meterization for the O/C increase in the bulk OA, which was composed of POA and some SOA. In Figure 12b,
the red lines are the O/C increases due to the mixing effect only and the blue lines represent the sum of

Figure 12. (a) Enhancement ratios of ΔOA to ΔCO versus smoke age for the five selected cases. Circles are the measured enhancement ratios, with the vertical error
bars showing the uncertainty in the measurement. The uncertainty in the estimated age is not shown but is same as in Figure 9. The red lines are parameterization
results for the best fit dilution rates assuming OA is nonvolatile. (b) Elemental O/C ratios versus smoke age for the five selected cases. Dots are the measured O/C
ratios. The red and blue lines are model results of mixing effects only and of both mixing and oxidation effects, respectively.
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mixing and chemical processing effects, both assuming a POA O/C ratio of 0.4 based on observations. In Fire 3
Pass 2 (Figure 12b), consistent with the low simulated OH, the slow increase of O/C was almost solely due to
mixing with background air rather than chemical oxidation. In other cases with sufficient oxidation, our para-
meterization generally agreed with the observed O/C increases. Although highly uncertain, the photochemi-
cal aging time scale of 0.05 days used here (equivalent to OH exposure of 0.6 × 1010molecules cm�3 s) is
much smaller than that of 1.5 days (equivalent to OH exposure of 1.94 × 1011 molecules cm�3 s) for SOA in
Mexico City [Hodzic and Jimenez, 2011] and Los Angeles [Hayes et al., 2015] conditions. In other BB plumes,
O/C aging time scales longer than 0.05 days were observed. For example, ~0.1–0.4 days were observed for
forest fire plumes in field studies [Cubison et al., 2011; Forrister et al., 2015] and ~1.2 days when exposing
smoke emitted from burning different types of biomass to OH and O3 in a flow reactor [Ortega et al.,
2013]. By comparison, the rate of oxidation of OA in the agricultural fire plumes reported here is substantially
faster than those in urban plumes, forest fire plumes, and smoke exposed in a flow reactor.

3.4. Annual Emissions of SO2, NOx, and CO From Crop Residue Burning in Southeastern U.S.

The measured EFs were used to estimate the annual emissions of three trace gases, SO2, NOx, and CO from
agricultural field burning in the four states where the agricultural fires were sampled (Arkansas, Louisiana,
Mississippi, and Missouri) and hence to compare with the 2011 National Emissions Inventory (NEI; http://
www.epa.gov/ttnchie1/net/2011inventory.html; accessed data in June 2015). Although the lab study by
Stockwell et al. [2014] found roughly similar emissions from various crop materials including rice straw
(generally within a factor of 2–3), it is very likely that the emissions of some species can be more variable
across crop type (e.g., Table 5). However, since the field EF data for other crops in the U.S. are not available,
the same EFs are assumed for all crops to roughly estimate the annual emissions of trace gases from open
burning in the four states. This noncrop-type specific EF assumption for SO2, NOx, and CO likely results in
an uncertainty of about a factor of 2. Emissions were calculated using the Seiler and Crutzen [1980] method
of multiplying EF, burned area, fuel loading (mass of biomass per unit area), and combustion completeness
(fraction of biomass consumed by fire). The EFs obtained in SEAC4RS were coupled with fire activity data from
three studies based on different methods:McCarty et al. [2009] is based on remote sensing andMelvin [2012]
and Reid et al. [2004] rely on government statistics. McCarty et al. [2009] estimated the area of crop residue
burning using satellite data from 2003 to 2007. Reid et al. [2004] reported government statistics for agricul-
tural burning for Arkansas, Louisiana, andMissouri collected in 2002. In Figure 10 ofMelvin [2012], acre ranges
of agricultural and forestry prescribed burning in 2011 were based on state records. We estimated the agri-
cultural burning area for each state by multiplying the average prescribed burning area by 37%, which is the
overall percentage of agricultural burning in the southeast region according to Figure 5 of Melvin [2012]. In
addition, the dry mass of rice straw was taken as 0.58 ± 0.14 kgm�2 [Oanh et al., 2011] and we assume that
100% of biomass was consumed in burning. Figure 13 compares a set of regional emission estimates based
on different fire activity data. The first three bars in the two figures are our estimates. The last red bars are the
estimates by the 2011 NEI, in which SO2, NOx, and CO emission data are available. The error bars of the esti-
mates based on Melvin [2012] represent a range corresponding to the burned area range as reported. Total
uncertainties are not explicitly shown, in part because there is not enough information to estimate them
quantitatively. The appropriate error would include error propagation from the noncrop-type specific EF data
and the estimates of biomass burned.

In Figure 13, the estimated emissions of SO2, NOx, and CO vary with the fire activity data used. In general, the
estimates based on McCarty et al. [2009] are the smallest emissions. Emissions estimated from Reid et al.
[2004] and Melvin [2012] and by the 2011 NEI are generally close, and they differ by less than a factor of
2.5 except for Missouri. The fire activity data are highly uncertain, as indicated in Figure 13. While there could
have been some variability in fire activities of different years [McCarty et al., 2009; van der Werf et al., 2010], it is
likely the different methods contributed most to the uncertainties in emissions. Three of the four estimates
rank Arkansas as the state with the highest agricultural burning emissions among the studied states.
Arkansas and Louisiana are also two of the several states that emitted the highest amounts of CO in the con-
tiguous U.S. according to McCarty [2011]. Summing up the four states, the average annual SO2, NOx, and CO
emissions from agricultural fires were ~2%, ~7%, and ~330% of coal combustion emissions estimated in the
2011 NEI. For NOx and CO, the agricultural fire emissions were about ~1% and ~9% of mobile sources, respec-
tively. These ratios are estimated to have uncertainties between factors of 2.1 and 2.4 by considering
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uncertainties in EFs and variations in burned areas. Further investigation is required to obtain realistic burn-
ing activities and crop-specific EFs for better emission estimation.

4. Conclusions

The emissions from 15 agricultural fires were measured over the southeastern U.S. from the NASA DC-8
research aircraft. Based on these measurements, this study reports a detailed set of EFs of a number of trace
gases and fine particles from agricultural field burning. The aerosol light absorption coefficients measured by
PSAP and the light absorption measured from liquid extracts of aerosol implied that BrC was ubiquitous in
these fires. The EFs as a function of MCE were examined. Whereas the EFs of VOCs generally showed good
anticorrelation with MCE, the EFs of inorganic gases and particles were likely influenced more by fuel compo-
sition and fire variability than by MCE and thus had weak correlations with MCE. We also compared the EFs
with the limited previous field and labmeasurements of crop residue fires. In general, the average EFs of trace
gases derived in this work agree well with those reported by Akagi et al. [2011], Hayashi et al. [2014], Kudo
et al. [2014], and Stockwell et al. [2015]. As for the particle species, the agricultural fires studied here had sig-
nificantly larger emissions than the lab burning of rice straw [Hayashi et al., 2014].

In addition, 7 out of the 15 fire plumes allowed for a detailed investigation into the chemical evolution of the
primary emissions during the first 1.2 h of aging. Rapid enhancement of O3 was observed with ΔO3/ΔCO
reaching ~0.10. Meanwhile, rapid conversion of NOx to PAN and nitrate was also observed with the ratios
of ΔPAN/ΔNOy and Δnitrate/ΔNOy being generally similar and each reaching up to ~0.4 in about 1 h.
Although no significant evolution of OA mass and BrC absorption was seen on average, a consistent increase
in O/C elemental ratios associated with aerosol aging indicated that chemical processing was ongoing and
that SOA formation consistently occurred but was likely offset by the evaporation of OA. We used the
LPCS-REAM model to simulate the chemistry within these young fire plumes. We found that the model rea-
sonably simulated O3 formation. The formation of PAN was generally underestimated by the model, which
implied missing radical sources likely due to unidentified oxygenated compounds or underestimated initial
VOC concentrations. Specifically, diacetyl, which is rarely measured in BB, could be a significant contributor
to PAN formation. In the case of HNO3 and nitrate, the model could not fully reproduce their branching.
On the other hand, the modeled sums of HNO3 + nitrate agreed with observations in three cases but were
biased low in the other two cases. We speculated that the assumed HNO3 uptake coefficient or the modeled

Figure 13. Estimates of annual emissions of (a) SO2, (b) NOx, and (c) CO from crop residue burning in Arkansas, Louisiana,
Mississippi, and Missouri. NOx emission estimates are reported as NO2. The green error bars of the estimates based on
Melvin [2012] represent the ranges of the burned area reported and are smaller than the overall errors of the emission
estimates.
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photochemistry (e.g., no initial HONO) might be responsible for these discrepancies. As PAN and nitrate
accounted for almost all observed NOx loss, organic nitrates in the gas phase or the particulate phase were
not formed efficiently in the agricultural fire plumes. The model also estimated radical concentrations within
the fire plumes during the 1 h simulation, with high OH levels that sometimes reached over
1 × 107molecules cm�3. By implementing the simple empirical parameterization proposed by Hodzic and
Jimenez [2011] with the parameters of Cubison et al. [2011], we modeled the evolution of OA mass. The OA
parameterization was generally consistent with the measured OA, although the number of OA samples
limited a thorough parameter optimization. After modifying the parameters used in Hodzic and Jimenez
[2011] to adapt to this study, our O/C parameterization indicated that the aerosol oxidation process within the
agricultural fire plumes appeared to be much faster than that in urban atmospheres and forest fire plumes.

With the measured EFs, we also roughly estimated the annual agricultural fire emissions of SO2, NOx, and CO
from Arkansas, Louisiana, Mississippi, and Missouri. The estimated ratio of the annual primary emissions from
agricultural burning to the annual primary emissions from major sources for these species follows: SO2 (~2%
of coal combustion), NOx (~1% of mobile sources), and CO (~9% of mobile sources). However, these ratios are
highly uncertain, about a factor of 2.1–2.4, since the EFs used for crop residues other than rice straw and the
burning activity are uncertain. Future investigation of the EFs for different crop fuels, fuel loading, and fire
activity will help address the uncertainties in agricultural burning emission inventories.
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