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a b s t r a c t

We evaluate the simulations of SO2 and sulfate using the Community Multiscale Air Quality model
(CMAQ) version 4.6 with the observations over the United States in 2002. MM5 was used for meteo-
rological simulations. While the general seasonal cycles of SO2 and sulfate are simulated well by the
model, we find significant systematic biases in the summer. The model low bias in sulfate is considerably
more severe than the model bias in SO2. Both ACM and RADM schemes are used in the model to test the
sensitivities of simulated sulfate to cloud processing. We carry out detailed modeling analysis and
diagnostics for July 2002. Compared to satellite observations of cloud liquid water path, CMAQ cloud
modules greatly overestimates convective (sub-grid) precipitating clouds, leading to large over-
estimation of sulfate wet scavenging. Limiting convective precipitating cloud fraction in the cloud
modules to <10% and hence significantly reducing wet scavenging lead to much improved agreement
between simulated and observed sulfate. The average lifetime of sulfate in the model increases from 1e2
days to 3e4 days for July. We show that a potential model problem of excessive wet scavenging of sulfate
does not necessarily lead to apparent problems in model simulations of sulfate wet deposition rate
compared to surface observations. In general, there is still a lack of direct observational constraints from
air quality monitoring measurements on model simulated cloud processing of SO2 and sulfate.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the tropospheric sulfur cycle is important
because of its impacts on ecosystem (acid rain), air quality, and the
radiation balance of the atmosphere. Human activities account for
60e80% of global emission of sulfur gases to the atmosphere
(e.g., Chin et al., 2000). Oxidation of sulfur gases produces sulfate
aerosols, which can directly influence the atmospheric radiation
budget by scattering solar radiation. Sulfate aerosols also can
indirectly affect the radiation budget through the modification of
cloud properties (e.g., Charlson et al., 1992; Ramanathan et al.,
2005). Three-dimensional chemical transport models that simu-
late the emissions, transports, chemical conversion, and dry and
wet removal processes of sulfur are important tools for under-
standing their characteristics at global/regional scales, and for
assessing their climatic and environmental effects (e.g., Chang
et al., 1987; Chin et al., 2000; Kasibhatla et al., 1997; Barth et al.,

2000; Qian et al., 2001; Tan et al., 2002; Mebust et al., 2003;
Yu et al., 2004; Eder and Yu, 2006; Huang et al., 2008; Appel
et al., 2008).

Clouds are a key player regulating the production and loss of SO2
and sulfate (e.g., Mueller et al., 2006, 2011). Dissolved SO2 in-cloud
droplets are oxidized by O3 and H2O2 to form sulfate. Evaporating
clouds leave behind sulfate aerosols while precipitating clouds
remove sulfate. Previous studies showed that aqueous-phase
oxidation of SO2 to sulfate makes a major contribution to sulfate
in rain. Early theoretical studies (Saxena and Seigneur, 1986;
Seigneur and Saxena, 1988) demonstrated the importance of
aqueous-phase oxidation of SO2 in determining ambient concen-
trations of sulfate. Daum et al. (1984) conducted aircraft measure-
ments of the composition of cloud liquid water and interstitial air
near Charleston, South Carolina. They found that the relative acidity
of cloudwaterwasmuch higher than that of the interstitial aerosols
or of clear-air aerosols samples, indicating the occurrence of
in-cloud acid formation. Prakash and Akula (1992) emphasized the
role of non-precipitating clouds in producing ambient sulfate in
summer. While precipitating clouds could be a source or sink of
sulfate, non-precipitating cloud is solely a source of sulfate. Sulfate
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concentrations simulated in a model therefore have a strong
dependence on its cloud simulations.

Air quality simulation models, such as the Community Multi-
scale Air Quality model (CMAQ)http://www.epa.gov/AMD/CMAQ/
index.html, are a central component of the air quality manage-
ment process at the national, state, and local levels. CMAQ is widely
used to estimate aerosol production, distribution and impacts on
air quality and ecosystems (e.g., Yu et al., 2004; Mueller et al., 2006;
Eder and Yu, 2006; Appel et al., 2008). For this research, we eval-
uate CMAQ simulations using available chemical and meteorolog-
ical observations in 2002 and examine in particular the effects of
cloud modules in CMAQ on sulfate simulations.

2. Observations and model description

2.1. Model description

The modeling system consists of 3 components, MM5, SMOKE,
and CMAQ. The CMAQ version 4.6 with the SAPRC99 chemical
mechanism (Carter, 2000) and AERO4 aerosol module (Binkowski
and Roselle, 2003) is used. The meteorological fields were
assimilated using Penn State/NCAR MM5 (version 3.6.2) with four
dimensional data assimilation (FDDA) (Stauffer and Seaman,
1990) using the NCEP reanalysis data (Grell and Stauffer, 1994;
Kalnay et al., 1996) for 2002. The 148 � 112 model-grid domain
covers the contiguous United States and part of southern Canada
and northern Mexico with a grid spacing of 36 km. There are 34
vertical layers in MM5 simulations. They are reduced to 19 layers
in the MeteorologyeChemistry Interface Processor (MCIP)
(version 2) for CMAQ simulations. We specified 19 vertical layers,
of which 12 are below 1 km. The study period is from January to
December 2002.

2.1.1. Emissions
CMAQ emission inputs were prepared from the VISTAS inven-

tory using the Sparse Matrix Operator Kernel Emissions (SMOKE)
Modeling System (http://www.smoke-model.org/index.cfm)
version 2.2. The VISTAS emission inventory was developed from the
1999 National Emissions Inventory (NEI) version 2 and scaled to
2002 (Barnard and Sabo, 2008). Source categories include biogenic
sources by BEIS3, on-road mobile sources by MOBILE6, non-road
mobile sources, area source, and stationary point sources. Actual
electrical generating unit (EGU) data are used within the VISTAS
domain. Fire emissions were recalculated for the southeastern
states based on the updated fire records collected from state and
federal fire agencies. Annual county-level fires emissions were
allocated to each month based on VISTAS reported burn areas in
each state as by Zeng et al. (2008).

2.1.2. Cloud modules
Cloud convection is computed using either RADM or ACM cloud

module. The sub-grid RADM cloud scheme in CMAQ was derived
from the diagnostic cloud model in RADM version 2.6 (Chang et al.,
1987, 1990; Dennis et al., 1993; Walcek and Taylor, 1986). The
analytical mixing scheme has been replaced with a new mixing
scheme based on the Asymmetrical Convective Model (ACM) that
was originally developed for planetary boundary layer (PBL) mixing
by Pleim and Chang (1992). The ACM scheme simulates a detraining
convective plume by non-local transport from the source layer
directly to each model layer within the convective layers. An
important difference from the RADM cloud scheme is that the
downward mixing in ACM is by gradual layer-by-layer compensa-
tory subsidence. The RADM cloud scheme removes cloud coverage
when the simulated mass flux over the 1 h time step exceeds the
mass available below cloud. This artificial restriction of cloud

coverage is eliminated in the ACM cloud scheme by setting amixing
time step according to mass flux constraints and iterating up to the
lifetime of the cloud.

2.2. Observation data sets and model evaluation metrics

2.2.1. Surface observations
The data sets we used to evaluate CMAQ model performance

include composition measurements from the Southern Aerosol
Research and Characterization (SEARCH), the Speciation Trends
Network (STN), the Interagency Monitoring of Protected Visual
Environments (IMPROVE) and the Clean Air Status and trends
Network (CASTNet), and wet deposition data from National
Atmospheric Deposition Program (NADP). Fig. 1 shows the site
locations of these observation networks.

In the IMPROVE network, samples of 24-h values every third
day are collected on filters each week (on Wednesday and
Saturday) beginning at midnight local time (Malm et al., 1994).
The IMPROVE network data are available at 62 mostly rural sites
over the US. In the SEARCH network, hourly or 24-h sulfate
concentrations are available at eight sites, i.e., three rural sites
(Yorkville, GA; Oak Grove, MS; Centreville, AL) and four urban sites
(Jefferson Street, Atlanta; North Birmingham, AL; Gulfport, MS;
Downtown Pensacola, FL) and Suburban Pensacola, FL (Hansen
et al., 2003). The CASTNET samples are collected weekly on 3-
stage filter packs to analyze gases and particles at 87 sites in 40
states. The wet deposition data from the National Atmospheric
Deposition Program (NADP) are computed by the precipitation-
weighted mean ion concentration for valid samples and total
precipitation amount (http://nadp.sws.uiuc.edu:/NADP/). The
monthly mean data are available at 311 sites over total US conti-
nent. STN data of 24-h values every third day are used to validate
the model too at 223 sites. Some details regarding each of these
networks (such as calibration standards, sampling methodology
and frequency) can be found at http://www.epa.gov/geoss/eos/.
The observed data contain uncertainties. In this study, we average
the observations by time (monthly) and region. Furthermore, the
model biases for sulfate are often quite large compared to the

Fig. 1. Site locations of the observation networks, the data from which were used in
this study.
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difference of measurement by different networks (for example, to
be shown in Fig. 10). Fig. 2 shows the map of 10 EPA regions,
which we use to group measurement data for model comparison.

2.2.2. Satellite observations
In addition to surface composition measurements, cloud water

path and cloud fraction retrieved from four satellite instruments,
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard
TERRA and AQUA satellites, AMSR (Advanced Microwave Scanning
Radiometer) on AQUA satellite, TMI (TRMMMicrowave Imager) are
used to evaluate model simulations. The MODIS cloud data of
TERRA and AQUA with its 2330 km viewing swath width provide
daily global coverage. It acquires data in 36 high spectral resolution
bands between 0.415 and 14.235 micronwith spatial resolutions of
250 m (2 bands), 500 m (5 bands), and 1000m (29 bands). We used
channel 13 (0.6e14.2 mm) data. The level-3 MODIS daily global
1� � 1� grid average values of cloud water path and cloud fraction
are used to evaluate corresponding model simulations. The water
path data of AMSR and TMI are available only over the oceans. The
standard deviation of the cloud fraction of these satellite data
isw0.2, and standard deviation of water path of these satellite data
is w140 g m�2. The Terra satellite crosses the US at 10:00
ame1:00 pm local time, and the Aqua satellite crosses the US at
1:00 pme4:00 pm local time. Model results are sampled in same
time periods.

2.2.3. Model evaluation metrics
Several statistical metrics are used here to compare the

observed and predicted concentrations at surface stations. The
root-mean square (RMS) absolute error RMSabs is computed as:

RMSabs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � yiÞ2
vuut

where xi are observed data and yi are modeled data. The RMSabs is
a strict measure of absolute model bias against the observed
aerosol concentrations. The second statistic parameter we exam-
ined is the relative root-mean square bias, RMSrel, which is
computed from the relative, rather than absolute, bias for each
cases,

RMSrel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

�
xi � yi

xi

�2
vuut

The relative root-mean square biases are calculated too. The
mean relative bias (MRB) is calculated as:

MRB ¼ 1
N

XN
i¼1

�
xi � yi

xi

�

3. Results and discussion

3.1. Sulfate

Since particulate sulfate is one of the largest contributors to total
PM2.5 mass over the eastern United States especially in the summer,
we begin our discussion by focusing on model evaluation with
sulfate observations from the IMPROVE, CASTNet, STN, and SEARCH
networks. We first compare the simulated and observed annual
mean sulfate concentrations (Fig. 3). Two model simulations using
RADM and ACM cloud modules are included. Table 1 lists the
comparison results. For annual mean concentrations, model
simulations are correlated with observations (R ¼ 0.6e0.7). Both
models show comparable performance and significantly underes-
timate sulfate concentrations. The model annual mean relative bias
is w25%.

To further understand the sulfate spatial distributions and
seasonal cycle, we calculate and compare monthly mean sulfate in
10 EPA regions over the US continent. Fig. 4 illustrates the observed
and simulated sulfate seasonal cycles in 10 EPA regions. The
seasonal cycle of simulated sulfate is similar to the observations
with high sulfate in summer and lower in winter (Rasch et al.,

Fig. 2. Distribution of the 10 EPA regions.

Fig. 3. Observed and simulated annual mean sulfate concentrations of all available sites in 2002. The RADM (left panel) and ACM (right panel) cloud modules are used. The least-
regression (solid) and 1:1 (dotted) lines are shown.
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2000). Simulated regional distribution is also reasonable, higher
sulfate in the eastern US (EPA regions 2e5) where anthropogenic
SO2 emissions are high, and lower in the West (EPA regions 8e10)
where anthropogenic SO2 emissions are low. Same as in Fig. 3,
monthly mean model sulfate is lower in almost all regions, except
in the Northwest (EPA region 10), and is lower than observations in
most seasons, except in winter. There are many factors that can
influence the sulfate simulations including SO2 emissions, gas and
aqueous-phase conversions, dry and wet depositions, and trans-
port. We will diagnose the reasons for the model underestimation
of sulfate after presenting SO2 results.

We note here that after completing this study, we have con-
ducted a modeling study using the newer CMAQ version 4.7 with
WRF version 3.2.1 assimilated meteorological field. The simulated
sulfate is much improved although the monthly mean relative low
bias in July still remains (�0.29 comparing to �0.62 for standard
ACM run see Table 2). Diagnosing the detailed difference between
WRF and MM5 (e.g., Zhao et al., 2009) and between CMAQ version
4.6 and 4.7 is beyond the scope of this work. We only focus on

diagnosing the underestimation of sulfate using available obser-
vations in this study.

3.2. SO2

We compare first the SO2 seasonal cycles in 10 EPA regions
(Fig. 5). Oxidation of SO2 to sulfate is more active in summer than in
winter. Concentrations of SO2 show the opposite seasonal cycles
compared to sulfate, i.e., higher inwinter and lower in summer. The
model captures the observed seasonal variations but tends to
overestimate SO2 in winter. In wintertime, vertical and horizontal
transport is a major factor affecting SO2 concentrations since
chemical oxidation is slow. The higher concentrations may be an
indication of error in the simulated vertical mixing, for example.
We did not explore further the reasons for winter SO2 biases in this
study because the model bias of SO2 is considerably less than
sulfate (except in EPA region 10). Relative to the large model
underestimates of sulfate, simulated SO2 concentrations in the
summer are in reasonable agreement with the observations. The
SO2 concentration agreement between the model and observations
does not suggest that there are no errors in the chemical conversion
and hence the loss of SO2. However, it does indicate that the
conversion of SO2 to sulfate is less likely to be the cause of the
simulated bias of sulfate. The concentrations of SO2 reflect the
balance between SO2 emissions and loss. In the summer, gas and
aqueous-phase conversion of SO2 to sulfate is the major loss. A bias
of the SO2 loss (and therefore sulfate source) would indicate a bias
of the SO2 source since the concentrations of SO2 are reasonably

Fig. 4. Observed and simulated monthly mean sulfate concentrations in 10 EPA regions (Fig. 2). The observations are shown in solid line, CMAQ simulation with ACM in dot line, and
CMAQ simulation with RADM in dash line.

Table 1
Linear regression parameters, root-mean square errors (RMSabs, RMSrel) and mean
relative biases (MRB) between simulated and observed annual mean sulfate
concentrations. Either the RADM or ACM cloud scheme is used in the model.

Model R Slope Intercept
(mg m�3)

RMSabs
(mg m�3)

RMSrel MRB

RADM 0.70 0.40 0.65 1.70 0.55 �0.24
ACM 0.62 0.35 0.74 1.82 0.56 �0.25
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simulated. There is no evidence for large overestimates of SO2
emissions in the summer. Therefore, one is compelled to assume
that the source of sulfate from SO2 oxidation is reasonably simu-
lated in the model.

3.3. Sulfate wet deposition

Wet deposition of sulfate dominates its removal (Barth et al.,
2000; Chin et al., 1996); dry deposition of sulfate is insignificant
(to be shown in Table 4). The NADP wet deposition data are
calculated by the precipitation-weighted mean ion concentrations
for valid samples and total precipitation amount at the sites, and
monthly mean sulfate wet deposition data are reported. In order to
investigate if the model low bias in simulated sulfate in summer is
related to wet deposition, here we compare simulated sulfate wet
deposition rates to the NADP observations. Fig. 6 shows observed

and simulated monthly mean sulfate wet deposition rates in the 10
EPA regions. Interestingly, simulated sulfate wet deposition rates
are reasonable good, except in the EPA eastern regions of 2e5 in
summer. The overestimates tend to be higher in using the ACM
scheme than the RADM scheme. The overestimated sulfate wet
deposition rates in these regions in summer may be an indicator of
model bias in precipitation. However, we note that the wet depo-
sition rates do not provide a direct constraint on sulfate concen-
trations. Since the sulfate lifetime is relatively short in summer (to
be shown in Table 4), there is an approximate balance between
local sulfate production and loss. Therefore the amount of wet
deposition is largely controlled by the sulfate production rate from
SO2 oxidation.

Having said that, we note that the recent work by Appel et al.
(2010) evaluated in detail the depositions of sulfate, ammonia,
and nitrate in CMAQ for 5 years using surface observations. They
used CMAQ version 4.7 with the updated ACM2 scheme, so the
results cannot be compared directly to this work. Some results from
that study are however, relevant. They found a general high bias in
convective precipitation and sulfate wet deposition in the summer.
A higher resolution (12 km) model in their study showed an even
higher bias than the 36-km resolution model. To correct for the
high wet deposition bias, they applied an adjustment assuming
that wet deposition of sulfate is linearly correlated (1:1) to
precipitation amount. Our analysis suggests a more complicated
relationship. Table 4 and Fig. 11 will show that wet deposition of
sulfate is more sensitive to convective cloud in the ACM scheme
than the RADM scheme. In the ACM scheme, convective cloud not
only affects wet deposition but also the production of sulfate (via

Fig. 5. Same as Fig. 4 but for SO2.

Table 2
Linear regression parameters, root-mean square errors (RMSabs, RMSrel), and mean
relative biases (MRB) of monthly mean sulfate between simulated and observed
annual mean sulfate concentrations for July, 2002.

Model R Slope Intercept
(mg m�3)

RMSabs
(mg m�3)

RMSrel MRB

ACM 0.80 0.49 �0.32 3.15 0.62 �0.62
ACM15 0.87 0.90 �0.54 1.10 0.36 �0.32
ACM10 0.85 0.97 �0.60 0.83 0.34 �0.28
RADM 0.85 0.58 �0.23 2.59 0.52 �0.52
RADM15 0.87 0.85 �0.45 1.29 0.37 �0.34
RADM10 0.87 0.90 �0.45 1.02 0.33 �0.29
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aqueous-phase oxidation of SO2). For the purpose of this work,
i.e., correcting the low bias in simulated sulfate concentrations in
the summer, we find that sulfate concentrations are much more
sensitive to convective cloud than sulfate wet deposition rates
(Figs. 10 and 11 and Table 4).

3.4. Sensitivity of sulfate simulations to cloud

Previous analysis suggests that the production and loss rates of
sulfate do not appear to have large biases. The significant bias in
sulfate simulations therefore likely resides in the timescales of
production and loss pathways (i.e., the rate “constants”). For sulfate,
cloud is not only a major loss pathway through wet scavenging, but
also a source through heterogeneous production in aqueous phase
(Hegg and Hobbs, 1981; Daum et al., 1984; Saxena and Seigneur
1986). Heterogeneously produced sulfate contributes to ground
level concentrations when it mixed down to the ground from cloud
level (Prakash and Akula, 1992). Wewill focus our model sensitivity
analysis of cloud effects in July, when convective clouds occur
frequently and model bias is large.

As discussion above, our two standard simulations are
CMAQ4.6 with ACM cloud module, and CMAQ4.6 with RADM
cloud module. We conduct model simulations using two different
sub-grid cloud schemes (RADM and ACM). We note here that
cloud effects may not be the only factor leading to the model bias.
Cloud oxidation in the CMAQ model also has large uncertainties
(Mueller et al., 2011). Kondo et al. (in press) suggested that the
RADM scheme tends to overestimate wet scavenging of aerosols
in the accumulation mode since below cloud washout is treated
as in-cloud rainout. Two cloud modules of ACM and RADM are

discussed in above section, detailed analysis of RADM and ACM
schemes is beyond the scope of this work. The ad-hoc modifica-
tion we implemented in this work by limiting convective
precipitating cloud fractions should therefore not be treated as
a mechanistic approach to improve the cloud scavenging schemes
in CMAQ.

Further we compare standard model simulated cloud water
path with satellite observations in July 2002 in Fig. 7. Cloud water
path is the vertical column of cloud water in the atmosphere. The
observations by MODIS (onboard TERRA and AQUA), AMSR, and
TMI are described in Section 2.2. Generally MODIS data are higher
than AMSR and TMI over the ocean. However, the disagreement
among the satellite products are much less than the large over-
estimates in the model using either the ACM or RADM cloud
module (see Fig. 7), which could result in a high bias in wet
deposition of sulfate.

To correct sulfate bias, we did two sensitivities. One is the
standard CMAQ4.6 with the ACM cloud module while limiting sub-
grid convective precipitating cloud fraction to <10%or <15%
(denoted ACM10 and ACM15). The second one is the standard
CMAQ4.6 with the RADM cloud module while limiting sub-grid
convective precipitating cloud fraction to <10% or 15% (denoted
RADM10 and RADM15). We limit only the convective precipitating
cloud fraction because the simulated water path is dominated by
convective clouds in the ACM scheme (Fig. 8). The same is true for
the RADM scheme (not shown). After limiting the convective
precipitating cloud fraction, the high bias in-cloud water path is
much reduced in the sensitivity simulation compared to the stan-
dard simulation, resulting in better agreement with the satellite
observations (Fig. 7).

Fig. 6. Same for Fig. 4 but for sulfate wet deposition rates. The observations were obtained from the NADP program.
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We further compared model simulated cloud fractions, which
mainly reflect large-scale resolved clouds, compared to satellite
observations (Fig. 9). While overestimating cloud water path, but
the models with both RADM and ACM schemes clearly underesti-
mate cloud fraction particularly over regions without convective
clouds. Mueller et al. (2011) also suggested that CMAQ cloud cover

has a low bias over the U.S. based on surface observations. Analysis
of Figs. 7e9 implies that themodel overestimates convective clouds
but underestimates large-scale resolved clouds.

By limiting the convective precipitating cloud fraction to <10%
based on the comparisons of Figs. 7 and 8, the wet scavenging of
sulfate is much reduced in the model, which will impact sulfate

Fig. 7. Comparison of simulated monthly mean water path with satellite observations for July 2002. The Terra satellite crosses the US over the intervals about 10:00 ame1:00 pm
local time and Aqua crosses the US in the intervals about 1:00 pme4:00 pm local time. Model results are averages from same time periods. RADM10 and ACM10 denote that
convective precipitating clouds are limited to <10% in the RADM and ACM cloud module, respectively.

C. Luo et al. / Atmospheric Environment 45 (2011) 5119e5130 5125



Author's personal copy

simulations in the model. It is indeed the case. Fig. 10 shows that
the large and systematic underestimates of sulfate in the model are
much reduced in the sensitivity simulations (RADM10 and ACM10).
Table 2 shows the regression statistics between observed and
simulated sulfate for the standard and sensitivity simulations. Not
surprisingly, the regression slope increases from 0.49 to 0.97, and
absolute RMS decrease from 3.15 to 0.83 from the standard ACM
scheme to ACM10, respectively; the slope increases from 0.58 to
0.90, and the absolute RMS decreases from 2.59 to 1.02 from the
standard RADM scheme to RADM10, respectively.

The effects of limiting convective precipitating cloud fraction on
simulated sulfate wet deposition are not as drastic as the sulfate
concentrations (Fig. 11) since the amount of sulfate wet deposition
is constrained less by sulfate concentrations but more by sulfate
production rates. This point becomes more apparent in the budget
analysis below. Nonetheless, significant reduction of simulated wet
deposition of sulfate is evident for the simulation using the ACM
cloud module (when the deposition rate is >0.5 kg S ha�1). The
reduction brings the model results closer to the observations. The
effect on the simulations using the RADM scheme is minor.

Fig. 8. Simulated monthly meanwater path distributions of convective (left) and resolved (right) clouds using the ACM cloud module for July 2002. Convective clouds are computed
in CMAQ but large-scale “resolved” clouds are obtained from MM5 and used in CMAQ.

Fig. 9. Monthly mean cloud fraction comparison between satellite observed and simulated data in July 2002. The observations by MODIS are used here. The Terra satellite crosses
the US over the intervals about 10:00 ame1:00 pm local time and Aqua crosses the US over the intervals about 1:00 pme4:00 pm local time. Model results are averages from same
time periods.

C. Luo et al. / Atmospheric Environment 45 (2011) 5119e51305126
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Fig. 10. Observed and simulated monthly mean sulfate for July 2002. The top panel shows the model results with the standard RADM and ACM cloud modules and the bottom panel
shows the results when convective precipitating clouds is limited to <10%. The least-regression (solid red) and 1:1 (dotted black) lines are shown.

Fig. 11. Same as Fig. 10 but for sulfate wet deposition rate. The observations from the NADP program were used. The left column shows the model results with the standard RADM
and ACM cloud modules and the right column shows the results when convective clouds are limited to <10%.
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The effect of cloud scavenging of sulfate does not affect signifi-
cantly the model simulations of surface SO2 (Fig. 12). The decrease
of aqueous-phase oxidation of SO2 by limiting convective precipi-
tating cloud fraction increases SO2 concentrations slightly, still in
reasonably good agreement with the observations. When convec-
tive precipitating cloud fraction is limited to <10%, the SO2 total
deposition decreases with dry deposition increasing and wet
deposition decreasing, and column burden increases (Table 3).
However, the overall effect on SO2 is relatively small compared to
sulfate (next section).

3.5. Sulfate budgets of sensitivity simulations

Clouds affect both the production and loss of sulfate. We
summarize the sulfate budget for standard and sensitivity simula-
tions in Table 4. When convective precipitating cloud fractions are
limited to 10% or 15%, the aqueous-phase production decreases,
gas-phase production increases, wet deposition decreases, and dry
deposition increases. Note that the removal of sulfate is almost
solely from wet scavenging, while both aqueous-phase and gas-
phase production is important for sulfate production. Conse-
quently, sulfate concentrations, column burden, and lifetime
increases when both wet scavenging and aqueous-phase produc-
tion is reduced by limiting convective precipitating cloud fraction
to 10 or 15%. The ACM cloud scheme estimatesmore aqueous-phase
production and removal than the RADM scheme. However, the two
schemes produce quite similar results when convection cloud
fraction is limited; the aqueous-phase production is about 60%
more than gas-phase production. Even though the aqueous-phase
production is larger, the contributions to column sulfate by
aqueous-phase production is slightly less than gas-phase produc-
tion because wet scavenging is collocated with aqueous-phase
production. This result is consistent with Barth et al. (2000).

Fig. 12. Same as Fig. 11 but for monthly mean SO2 concentrations.

Table 3
Simulated SO2 deposition rates and column burden for July 2002 over the US
domain.

Model Dry dep.
(mg m�2 hr�1)

Wet dep.
(mg m�2 hr�1)

Total dep.
(mg m�2 hr�1)

Column
(mg m�2)

RADM 29.54 7.28 36.82 3.47
RADM15 31.37 3.83 35.20 3.80
RADM10 31.87 3.20 35.07 3.91
ACM 27.95 5.62 33.57 2.78
ACM15 32.06 1.56 33.62 3.51
ACM10 33.22 1.16 34.38 3.73

Table 4
Sulfate budgets for July 2002 over the US domain.

Model Production
(mg m�2 hr�1)

Dep. frm aq. phase prod.
(mg m�2 hr�1)

Dep. frm gas-phase prod.
(mg m�2 hr�1)

Column
(mg m�2)

Lifetime
(days)

Export (%)

Aq. Gas Wet Dry Wet Dry Aq. Gas

ACM 139.9 53.18 124.4 0.89 47.54 1.26 2.0 2.3 1.0 10
ACM15 101.7 56.64 83.53 2.21 36.16 2.10 4.1 4.2 2.8 21
ACM10 87.23 57.60 70.99 2.42 32.78 2.29 4.6 4.8 3.6 25
RADM 97.57 49.85 86.79 1.50 40.58 1.73 3.0 3.4 2.0 11
RADM15 86.68 53.70 72.52 2.04 35.80 2.19 3.9 4.4 3.1 20
RADM10 82.05 54.50 66.73 2.18 33.62 2.32 4.3 4.8 3.6 23
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By limiting the convective precipitating cloud fraction, simu-
lated column sulfate burden increases by 50e100%. Even more
drastic, the lifetime of sulfate increases from 1 or 2 days to 3.6 days.
As a result, a much larger fraction of sulfate (>20% compared to 10%
in the standard model) is exported out of the U.S. domain. Sulfate
production and deposition decrease, and sulfate column and sulfate
residence time increase by limiting convective precipitating cloud
fraction (Table 4). The longer sulfate lifetime simulated in the
ACM10 and RADM10 simulations is more consistent with previous
modeling studies by Gary and Chang (1997), Quinn and Bates
(2003), Barth et al. (2000), Chin et al. (2000); Koch et al. (1999),
and Pham et al. (1995).

4. Conclusions

SO2 and sulfate simulated using the CMAQmodel version 4.6 are
evaluated with the observations over the United States in 2002.
While the general seasonal cycles of SO2 and sulfate are reproduced
by the model, we find systematic low biases for sulfate in the
summer. We note that the low bias is reduced by 50% when using
CMAQ version 4.7 with WRF meteorological fields; the reason for
the improvement is unclear. To diagnose the low biases in CMAQ
version 4.6 with MM5 meteorological fields, both ACM and RADM
schemes are used to test the sensitivities of simulated sulfate to
cloud processing. We carry out detailed modeling analysis and
diagnostics for July 2002. Compared to satellite observations of
cloud liquid water path, we found a large high bias of estimated
(sub-grid) convective clouds, leading to large overestimation of
sulfate wet scavenging. Limiting convective precipitating cloud
fraction in the cloud modules and hence significantly reducing wet
scavenging leads to much improved agreement between simulated
and observed sulfate. Model simulations show that aqueous-phase
production of sulfate is much larger than gas-phase production,
and it is more then 60% of total production, but their contributions
to sulfate column are about same since sulfate removal is domi-
nated by wet scavenging. The average lifetime of sulfate in the
model increases from 1e2 days to 3e4 days and column burden
increases 50e100% by limiting convective precipitating cloud
fraction to <10% for July.

In this study, we find that simulated surface SO2 concentrations
are not nearly as sensitive to model cloud modules as sulfate. We
show that a potential model problem of excessive wet scavenging
of sulfate does not necessarily lead to apparent problems in model
simulations of sulfate wet deposition rate compared to surface
observations. In general, there is still a lack of direct observational
constraints from air quality monitoring measurements on model
simulated cloud processing of SO2 and sulfate. Field experiments
with targeted aircraft and surface observations in addition to air
quality monitoring measurements will be needed to improve our
ability to simulate cloud processing of pollutants.
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