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Evaluation of model simulated atmospheric constituents with observations
in the factor projected space: CMAQ simulations of SEARCH measurements
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a b s t r a c t

Two-year CMAQ simulations of gases and aerosols over the southeast are evaluated using SEARCH
observations for 2000 and 2001, both by direct comparison to observations and by projecting both
datasets to the factor space using the Positive Matrix Factorization (PMF) model. Model performance for
secondary species (sulfate, ozone) is generally better than for primary species (EC, CO). Nitrate
concentrations are overestimated, mainly due to wintertime over-partitioning to the particulate phase.
Projecting both observed and simulated constituents to the factor space using PMF, four common factors
are resolved for each surface site (two urban sites and two rural sites). The resolved factors include (1)
secondary sulfate, (2) secondary nitrate, (3) a fresh motor vehicle factor characterized by EC, OC, CO, NO
and NOy, and (4) a mixed factor characterized by EC, OC, and CO. Performance for the sulfate and nitrate
factors follow that of the corresponding driving species, while the motor vehicle and ‘‘mixed’’ factors
exhibit performance corresponding to that of primary species. Comparing observations and CMAQ
simulations in the projected space allow for an evaluation of the co-variability between species, an
indicator of source impacts. The fact that similar factors were resolved by PMF from both the
observations and the CMAQ simulations suggests that temporal processes related to emissions from
specific source categories, as well as the subsequent dispersion and reactivity, are well captured by the
CMAQ model. The ability to identify additional factors can be enhanced by adding tracer species in CMAQ
simulations.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Air quality models generally fall into one of two classes:
receptor-based and emission-based. Here, we combine and
compare the two approaches in a novel way: we apply a receptor
model to both simulated data from an emission-based model and in
situ observations in the southeastern USA over a period of two years.

The Southeastern Aerosol Research and Characterization project
(SEARCH) is an ongoing aerosol measurement program that began
in August 1998. SEARCH data have been used extensively in health
effects research (Tolbert et al., 2001), and the Atlanta SEARCH site
was an EPA Supersite location (Hansen et al., 2003). We use
measurements at four SEARCH sites (Liu et al., 2004, 2006),
including North Birmingham [BHM] (urban) and Centreville [CTR]

(rural) in Alabama and Atlanta [JST] (urban) and Yorkville [YRK]
(rural) in Georgia. These two urban–rural pairs across southeast US
are well suited to evaluate the CMAQ model performances in rural
and urban areas. For the emission-based model in this project, we
use the simulation results for 2000 and 2001 using the EPA’s
Models-3 system (Marmur et al., 2004; Park et al., 2006a), which
includes the Fifth-generation Pennsylvania State University/
National Center for Atmospheric Research (NCAR) Mesoscale Model
(MM5) (Grell et al., 1995), the Sparse Matrix Operator Kernel
Emissions Modeling System (SMOKE) (Houyoux et al., 2000) and
Community Multiscale Air Quality (CMAQ, v4.3) (Byun and Schere,
2006) model. The long simulation period allows the application of
factor analysis-based receptor models that require a relatively long
record of data to derive both the source factors as well as daily
source apportionment.

A PCA-based receptor model (Cohn and Dennis, 1994 and Li,
1995) was used to examine the performance of the Regional Acid
Deposition Model (RADM) (Chang et al., 1987) and the Acid
Deposition and Oxidant Model (ADOM) (Venkatram et al., 1988).
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Since multiple interacting species are involved in a system,
multivariate methods offer a means for characterizing the system
by investigating the covariance structures. In this work, the
receptor-based model chosen is the Positive Matrix Factorization
(PMF) (Paatero and Tapper, 1994). PMF has been widely used in
source apportionment studies (Lee et al., 1999; Chueinta et al.,
2000; Paterson et al., 1999; Polissar et al., 1999, 2001). Previously
it was applied to analyze SEARCH measurements (Kim et al.,
2003; Kim et al., 2004a,b; Liu et al., 2004, 2006; Lee et al., 2008).

In this work, we apply PMF to CMAQ simulation results. To our
knowledge this is the first attempt to apply PMF to long-term air
quality model simulations. Previously, Shim et al. (2007) applied
PMF to analyze aircraft observations of trace gases and corre-
sponding simulations by a global chemical transport model. We
took the same approach here to apply the PMF method in the
analysis of PM2.5 and selected gas-phase measurements and CMAQ
model results in the projected factor space. Compared to direct
evaluations, the coherent gas and aerosol structures resulting from
the same or co-located sources, as evident in the data covariance,
are evaluated simultaneously. In the analysis, we first briefly
describe the evaluation of the model performance on the species
level. This ‘‘conventional’’ analysis provides the necessary basis to
interpret the PMF analysis results that follow.

2. Measurements and CMAQ simulations

PM2.5 composition and gas-phase measurements at four sites
(BHM, CTR, JST, YRK) from January 1, 2000 to December 31, 2001 are
analyzed in this study. Daily integrated PM2.5 and gas-phase
measurements are collected at the JST site. Every third day data
are obtained at the others. A total of 600, 224, 230, and 219 samples
are available for the JST, BHM, YRK, and CTR sites, respectively.

There are occasional ‘‘missing data’’ (no reported measure-
ments) for one or more species in the observational samples. The
analytical uncertainty and detection limit for each chemical species
are also provided for the observational dataset. More detailed
description of these measurements is found elsewhere (Liu et al.,
2004). For model evaluation purpose, only those measured species
which are simulated by CMAQ are used in this study. Particulate
species include PM2.5 mass, sulfate (SO4

2�), nitrate (NO3
�),

ammonium (NH4
þ), organic carbon (OC), elemental carbon (EC), and

dust elements (calculated as Soil¼ 2.20*Alþ 3.48*Siþ 1.63*Caþ
2.42*Feþ 1.94*Ti according to the IMPROVE protocol (Sisler et al.,
1996)). The IMPROVE protocol is used because CMAQ only predicts
one aggregated soil term, rather than the individual species. The
development of trace element modeling within CMAQ is currently
underway at Georgia-Tech, but is beyond the scope of this work.
Gaseous species include ozone (O3), carbon monoxide (CO), sulfur
dioxide (SO2), nitrogen oxides (NO(x)), nitric acid gas (HNO3), and
total reactive nitrogen (NOy). Measurements of NOx are available
only at the JST site; NO measurements are used for the other three
sites.

The same chemical constituents are simulated by using CMAQ
(Byun and Schere, 2006) during the same period for the eastern US.
CMAQ is an Eulerian chemical transport model that simulates the
emissions, transport, chemical transformation, and deposition of
air pollutants. It employs a ‘‘one-atmosphere’’ approach and
addresses complex interactions known to occur among multiple
pollutants. The model, as applied here, uses a horizontal resolution
of 36� 36 km2, with 6 layers. This model setup reduced the
computational burden associated with long simulations such as the
one used here (2 years). The relatively coarse grid spacing (both
horizontally and vertically) is expected to introduce some biases as
a result of artificial dilution. However, these are related mainly to
spatial variability, while the focus of this work is the temporal

Table 1
Comparison between trends in observed and simulated concentrations during
2000–2001 at four SEARCH sites (MO – mean observed, MS – mean simulated, SDO –
standard deviation of observed, SDS – standard deviation of simulated, FBC – frac-
tional bias in concentrations, FBV – fractional bias of variability, R2 – Pearson’s
correlation coefficient).

MO
(mg m�3)

SDO
(mg m�3)

MS
(mg m�3)

SDS
(mg m�3)

FBC FBV R2

a. JST
Mass (mg m�3) 17.18 8.14 22.31 11.27 0.26 0.06 0.42
Total S (mg S m�3) 10.02 7.28 6.17 3.02 �0.48 �0.39 0.35
SO4

2� (mg m�3) 4.71 3.02 4.72 2.99 0.00 �0.01 0.53
Total N (mg N m�3) 32.9 26.1 13.35 5.71 �0.85 �0.60 0.35
NO3
� (mg m�3) 1 0.88 2.89 3.68 0.97 0.37 0.35

NH4
þ (mg m�3) 2.59 1.18 2.52 1.44 �0.03 0.23 0.2

EC (mg m�3) 1.52 1.04 1.02 0.48 �0.39 �0.37 0.36
OC (mg m�3) 3.98 2.31 2.54 1.44 �0.44 �0.02 0.34
Soil (mg m�3) 0.64 0.52 6.97 10.82 1.66 0.63 0.04
O3 (ppb) 23.94 12.48 35.54 18.33 0.39 �0.01 0.63
CO (ppb) 472.77 385.04 329.95 127.18 �0.36 �0.72 0.36
SO2 (ppb) 6.79 5.98 3.52 2.09 �0.63 �0.39 0.42
NO (ppb) 26.78 44.6 3.06 3.88 �1.59 �0.27 0.08
HNO3 (ppb) 1.29 1.28 1 1.03 �0.25 0.04 0.05
NOy (ppb) 57.02 46.75 22.22 9.01 �0.88 �0.68 0.34

b. BHM
Mass (mg m�3) 18.63 9.85 17.76 8.74 �0.05 �0.07 0.46
Total S (mg S m�3) 8.71 5.54 6.8 3.35 �0.25 �0.25 0.36
SO4

2� (mg m�3) 4.87 3.32 4.76 3.09 �0.02 �0.05 0.49
Total N (mg N m�3) 25.97 20.97 7.03 2.85 �1.15 �0.66 0.56
NO3
� (mg m�3) 1.04 0.9 1.68 2.62 0.47 0.57 0.5

NH4
þ (mg m�3) 2.9 1.91 1.93 1.12 �0.40 �0.13 0.2

EC (mg m�3) 2.08 1.56 0.5 0.24 �1.22 �0.44 0.35
OC (mg m�3) 4.69 3.09 2.08 1.3 �0.77 �0.05 0.37
Soil (mg m�3) 1.35 1.08 4.62 3.42 1.10 �0.08 0.12
O3 (ppb) 22.3 11.14 39.59 15.04 0.56 �0.27 0.57
CO (ppb) 557.11 337.46 200.6 61.8 �0.94 �0.65 0.48
SO2 (ppb) 5.73 4.2 3.99 2.24 �0.36 �0.27 0.37
NO (ppb) 25.26 31.6 0.74 0.71 �1.89 �0.26 0.18
HNO3 (ppb) 0.63 0.69 0.84 0.81 0.29 �0.13 0.06
NOy (ppb) 44.96 38.66 11.64 4.36 �1.18 �0.79 0.51

c. YRK
Mass (mg m�3) 14.16 8.43 16.16 8.39 0.13 �0.14 0.27
Total S (mg S m�3) 4.88 3.53 7.33 3.33 0.40 �0.46 0.41
SO4

2� (mg m�3) 4.48 3.04 4.63 3.08 0.03 �0.02 0.59
Total oxidized N

(mg N m�3)
4.68 3.63 5.4 3.13 0.14 �0.29 0.68

NO3
� (mg m�3) 0.94 0.92 2.38 3.28 0.87 0.34 0.42

NH4
þ (mg m�3) 2.23 1.53 2.19 1.21 �0.02 �0.22 0.15

EC (mg m�3) 0.63 0.35 0.41 0.26 �0.42 0.13 0.33
OC (mg m�3) 3.1 2.06 1.76 1.14 �0.55 �0.03 0.3
Soil (mg m�3) 0.31 0.32 4.11 2.5 1.72 �0.52 0.002
O3 (ppb) 40.47 15.27 42.04 15.88 0.04 0.00 0.66
CO (ppb) 172.52 50.04 154.25 70.16 �0.11 0.44 0.31
SO2 (ppb) 2.59 2.52 4.43 2.28 0.52 �0.62 0.41
NO (ppb) 0.68 1.69 0.57 1.01 �0.18 �0.34 0.4
HNO3 (ppb) 0.98 0.78 0.75 0.75 �0.27 0.23 0.22
NOy (ppb) 7.83 6.08 8.51 4.62 0.08 �0.35 0.65

d. CTR
Mass (mg m�3) 12.84 7 12.41 6.43 �0.03 �0.05 0.39
Total S (mg S m�3) 4.34 2.89 4.67 2.85 0.07 �0.09 0.56
SO4

2� (mg m�3) 4.25 2.95 4.39 2.92 0.03 �0.04 0.59
Total oxidized N

(mg N m�3)
3.07 1.98 2.76 1.57 �0.11 �0.13 0.59

NO3
� (mg m�3) 0.36 0.4 1 1.78 0.94 0.46 0.48

NH4
þ (mg m�3) 1.4 0.75 1.51 0.86 0.08 0.06 0.32

EC (mg m�3) 0.6 0.38 0.3 0.15 �0.67 �0.24 0.42
OC (mg m�3) 2.9 1.7 1.95 1.15 �0.39 0.01 0.52
Soil (mg m�3) 0.43 0.43 2.7 1.79 1.45 �0.41 0.004
O3 (ppb) 37.22 12.92 43.41 11.81 0.15 �0.24 0.64
CO (ppb) 187.77 46.5 105.8 28.44 �0.56 0.08 0.3
SO2 (ppb) 2.14 1.96 2.4 1.97 0.11 �0.11 0.6
NO (ppb) 0.42 0.53 0.17 0.24 �0.85 0.11 0.72
HNO3 (ppb) 0.69 0.49 0.63 0.49 �0.09 0.09 0.3
NOy (ppb) 5.12 3.32 4.34 2.26 �0.16 �0.22 0.57
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variability in source/factor contributions in both ambient data and
modeling results. The model domain covers most of North America
in order to minimize the effects of boundary conditions on model
results (Marmur et al., 2004; Park et al., 2006a). The SAPRC 99
(Carter, 2000) chemical mechanism was used. The EPA 1999
National Emissions Trends (NET99) inventory was used, processed
by SMOKE (Houyoux et al., 2000). Meteorology was assimilated
using the NCAR/Penn State MM5 model (Grell et al., 1995). Park
et al. (2006b) found that MM5 simulated meteorological fields are
adequate for air quality simulations.

3. Method

We first compare CMAQ results to the observed gas and aerosol
compositions. Among the statistical measures used in the
comparison are the mean (M) and standard deviation (SD) of
observed (O) and simulated (S) concentrations (MO, SDO, MS, SDS,
respectively), concentration fractional bias (FBC¼ 2(MS�MO)/
(MSþMO)), variability fractional bias (FBV¼ 2(SDS/MS� SDO/
MO)(SDS/MSþ SDO/MO)) (Odman et al., 2002; Boylan and Russell,
2006), and squared linear correlation coefficient (r2).

In addition to this rather ‘‘conventional’’ evaluation, PMF was
applied to the measurements and model results, respectively. The
species chosen in PMF analysis are the same as in the work by Liu
et al. (2006) except for dusts, which do not correlate with other
species. The algorithm of PMF was described in detail elsewhere
(Paatero and Tapper, 1994; Paatero, 1997). Application of PMF
requires that error estimates for the data be chosen judiciously so
that the estimates reflect the quality and reliability of each data

point because data with high uncertainties are weighted less in the
analysis. We follow the approach by Polissar et al. (1998) to esti-
mate the measurement uncertainties. For measurements above the
detection limit, the overall uncertainty is the sum of the
measurement uncertainty and one third of the detection limit. For
measurement data below the detection limit, half of the detection
limit is assigned to the concentration and the uncertainty is
assigned to be 5/6 of the detection limit. For missing measurement
data, the geometric mean is assigned to be the concentration and
the uncertainty is assigned to be 4 times the geometric mean. In
order to compare PMF projected model results with the observa-
tions on a consistent basis, we assign the model values corre-
sponding to the missing measurements to be the geometric mean.
For these values, their error estimates are 4 times of geometric
mean of the model results. For the model results below the
detection limit, we assign an uncertainty of 5/6 of the detection
limit to these data. For the other model data, we first calculate the
average relative overall uncertainties estimated previously for
the measurements above the detection limits. The products of
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Fig. 1. De-noised temporal variations of observed and simulated SO2 and NOy fractions at the four sites.

Table 2
Correlation coefficient values (R2) for pairwise comparisons of source contributions
between observed and CMAQ simulated data resolved by PMF for the four sites.

R2 (Obs. vs. CMAQ)

JST BHM YRK CTR

Sulfate 0.55 0.48 0.64 0.61
Nitrate 0.28 0.45 0.38 0.47
Fresh motor vehicle 0.12 0.17 0.34 0.30
Mixed 0.23 0.31 0.27 0.37
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these relative overall measurement uncertainties and simulated
values are taken as model uncertainties.

We follow the normal practice to experiment and find the
optimal one with the most physically meaningful results. Analysis
of the goodness of model fit, Q, as defined by Paatero (1997), is used
to help determine the optimal number of factors. Fkey was used to
reduce the rotation uncertainty. The final Q values are: JST
(Observation: 6016 with data dimension of 6020, Model: 6113 with
data dimension of 6000); BHM (Observation: 2046 with data
dimension of 2240, Model: 2156 with data dimension of 2240); YRK
(Observation: 2451 with data dimension of 2300, Model: 1974 with
data dimension of 2300); CTR (Observation: 2579 with data
dimension of 2190, Model: 2634 with data dimension of 2190).

Multiple linear regression (MLR) was performed to regress
the mass concentrations against the factor scores (Xie et al.,
1999). Because PMF results have a portion of unexplained vari-
ation, the mass concentrations excluding the unexplained
variation portion from G factors (factor contributions) are used to
regress the factor scores to obtain the quantitative factor
contributions for each resolved factor. We also exclude the dust
components in the regression by using the IMPROVE protocol to
estimate the dust contributions. The regression coefficients are
used to transform the factor contribution results into the particle
source contributions with physically meaningful units. The cor-
responding factors derived from the observed and simulated
datasets are compared.
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Fig. 2. Factor profiles of the sulfate factors in the observed and simulated datasets resolved by PMF at the four sites.
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4. Results and discussion

4.1. Composition statistics

Detailed comparison statistics of the model simulations with
the measurements are listed in Table 1a–d. These indicate that the
model tends to underpredict concentrations of primary species
(such as EC, dust, SO2, and NO), with the exception of crustal
material. The underprediction is likely due to the relatively coarse
grid used (both horizontally and vertically). Despite this under-
prediction in concentrations, variability of primary species (repre-
sented here by FBV) is better simulated compared to mass
concentrations, the performance of which is represented by FBC
(i.e., for most primary species at most sites, the model better

simulates variations in concentrations than the actual mass
concentrations of these species). The overprediction in crustal
material is due to the fact that CMAQ mixes all of the resuspended
soil dust within the first layer, while in reality many of them are
removed locally by impaction on surfaces such as buildings, vehi-
cles, and vegetation (DRI, 2000). Sulfate concentrations are well
simulated compared to most other species (R2 values from 0.4 to
0.6) at the four sites. However, urban SO2 concentrations are
underpredicted due to artificial dilution of emission sources in the
coarse grid. Rural sites exhibit a slight overprediction of SO2

concentrations. The simulations of NOy and CO show a similar
pattern compared with the measurements: the concentrations at
urban sites are significantly underpredicted while the predictions
at rural site are reasonably good. The annual average of simulated
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Fig. 3. Factor profiles of the nitrate factors in the observed and simulated datasets resolved by PMF at the four sites.
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nitrate is higher than the observations largely because of the
overestimates during cold seasons. Nitrate is well correlated at
the two Alabama sites (R2 z 0.5) and less so at the Georgia sites.
The model captures seasonal variations in nitrate levels, but
performs rather poorly in capturing intra-season/daily variations in
nitrate levels. Comparing these performance findings to a study
using a finer grid (Hu et al., 2004; 4 km horizontal resolution with
13 vertical layers), better agreement with the observations was
found for the primary species, but ozone and sulfate performance
were similar to those presented here.

Total S [SO2þ SO4
2�, expressed in mg S m�3] and total oxidized

nitrogen [NOyþNO3
�, expressed in mg N m�3] are good measures for

evaluating the model emission and dispersion estimates, as total S
and N are less dependent on the simulated SO2–SO4

2� and NOy–NO3
�

partitions. The model is able to simulate the observed variability in

general as reflected by the reasonable R2 values (from 0.35 to 0.68).
CMAQ simulated gas to particle phase partitions of sulfur and
oxidized nitrogen can be evaluated with the observations by
investigating the ratios of [SO2 (mg S m�3)]/[total S concentration
(mg S m�3)] and [NOy (mg N m�3)]/[total oxidized N concentration
(mg N m�3)], respectively. In order to compare the seasonal varia-
tions between the observations and CMAQ, ratios of SO2 to total
sulfur and NOy to total oxidized nitrogen are processed using sym8
wavelet decomposition with soft heuristic thresholding and scaled
noise options (Eskridge et al., 1997; Lou and Loparo, 2004). Linear
interpolation is used in places of missing data. Considering the
amount of missing data at each site, only year 2000 data for the JST,
YRK and CTR sites and year 2001 data for BHM site are processed
(Fig. 1). Seasonal cycles of the observed SO2 fractions are well
captured by the model, although the model cannot capture all the
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Fig. 4. Factor profiles of the fresh motor vehicle factors in the observed and simulated datasets resolved by PMF at the four sites.
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higher frequency variations. The observed NOy fractions show little
variations, indicating that gas-phase NOy accounts for the bulk of
atmospheric oxidized nitrogen. In comparison, the model results
show a clear winter minimum. The gas-particle partition of the
oxidized nitrogen species is particularly sensitive to temperature
and the availability of ammonia gas. The underestimated CMAQ
NOy fractions in winter imply that CMAQ apportions too much gas-
phase N to nitrate during cold seasons. It appears that either the
nitrate mechanism of the model is overly sensitive to the variations
in temperature or ammonia is overestimated in the model.

4.2. PMF results

The PMF analysis was carried out using nine common species
that are both measured and simulated (SO2 was excluded from the

analysis due to a high number of missing observations). Four factors
are resolved for the observed and simulated datasets for the four
sites, based on the goodness of model fit, Q (Paatero, 1997) and
physical representation of the identified factors. The factors iden-
tified are: secondary sulfate, secondary nitrate, fresh motor vehicle,
and a mixed factor. The linear correlations (R2 values) between the
factors from observed and simulated data (Table 2) typically follow
the same patterns as in the ‘‘conventional’’ evaluation (Table 1),
with the sulfate factor exhibiting the highest correlation, followed
by the nitrate factor, and factors driven by primary species (motor
vehicle and ‘‘mixed’’) exhibiting poorer performance. Comparing
observations and CMAQ simulations in the projected space allow
for an evaluation of the co-variability between species, an indicator
of source impacts. The fact that similar factors were resolved by
PMF from both the observations and the CMAQ simulations
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suggests that temporal processes related to emissions from specific
source categories, as well as the subsequent dispersion and reac-
tivity, are well captured by the CMAQ model.

We use explained variations (EV) to define the factor profiles
because the gas and particulate phase concentrations of different
species are not directly comparable. The value of EVij is the fraction
of species i that can be explained by factor j (Paterson et al., 1999).
The average seasonal factor contributions were also compared at
the four sites between the observed and simulated datasets, though
only results for the urban sites are shown (Figs. 6 and 7), as the rural
sites showed fairly similar seasonal patterns.

The secondary sulfate factor has high concentrations of sulfate
and ammonium (Fig. 2) in both the simulated and the observed
data among the four sites. This factor shows a strong seasonal

variation with high concentrations during summertime (Figs. 6 and
7), reflecting, in part, the more active photochemical production of
sulfate from SO2 in the summer. Not surprisingly, the factor
accounts for a major fraction of ammonium. Sulfate in the southeast
is neutralized (e.g., Liu et al., 2004). This factor is also mixed with
HNO3 in both the simulated and observed data. The high correla-
tion between the secondary sulfate and HNO3 is likely due to three
reasons. First, sulfate and HNO3 are secondary photochemical
products, and regional recirculation mixes these pollutants.
Furthermore, the major primary sources of SO2 also tend to be NOx

sources. Second, HNO3 competes with H2SO4 gas for available
ammonia (Russell et al., 1983). The more abundant H2SO4 in
summer leaves little ammonia for the conversion of HNO3

to particulate nitrate. Third, the cool temperatures in winter tend to
favor nitrate formation. Hence, both sulfate and HNO3 tend to be
higher in summer. The resolved CMAQ factor contributions are
generally consistent with those for the measurements. The R2

values between the two datasets are relatively high, in the range of
0.5–0.6 (Table 2); the good correlations are reflected in the time
series of the corresponding factors. The correlations are better at
the rural sites than the urban sites. The meteorological model,
MM5, has been shown to capture more of the inter-annual and
synoptic-scale variability of important meteorological parameters
such as surface temperature and wind speed, compared to fluctu-
ations on the intra-day and diurnal time scales (Hogrefe et al., 2001,
2004). Not fully capturing the shorter time scales in the

Table 3
OC/EC ratios of source factors between observed and CMAQ simulated data resolved
by PMF for the four sites.

Fresh motor vehicle (OC/EC) Mixed factor (OC/EC)

JST observation 1.48 2.91
JST CMAQ 1.58 3.82
BHM observation 1.27 2.30
BHM CMAQ 1.44 6.46
YRK observation 1.35 6.08
YRK CMAQ 1.20 4.83
CTR observation 1.33 5.95
CTR CMAQ 1.14 5.42
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meteorological fields by MM5 may partly explain the poorer
performances in urban areas, where the variations on the intra-day
and diurnal time scales are larger than rural sites. However, the
CMAQ based factors are more ‘‘smeared’’ compared to the obser-
vation based ones. For example, in most cases, the CMAQ based
sulfate factors contain more EC, a species not typically associated
with sulfate formation, compared to the observation based factors.
This is due mainly to the relatively coarse spatial setup of CMAQ.
The CMAQ based factors are derived based on modeling results
representing an average grid cell of 36� 36 km, while the obser-
vation based factors are derived from point measurements (though
even a finer grid, such as 12�12 km or 4� 4 km would be much
coarser compared to a point measurement at a monitoring site).
The point measurements typically allow for a more distinct
breakdown of factors affecting trends in ambient concentrations at
the receptor site, compared to the more mixed spatial representa-
tion of CMAQ.

The secondary nitrate factor dominates the contributions to
nitrate, as well as w20% of the ammonium (Fig. 3). Nitrate is formed
in the atmosphere through oxidation of NOx. Nitric acid gas tends to

condense to particle phase nitrate at low temperatures, high
humidity, and in the presence of ammonia gas. Therefore high
concentrations of nitrate occur mainly during winter in both of the
simulated and observed data (Figs. 6 and 7). However, the winter-
time peaks are significantly higher for CMAQ. Time series of this
factor for the observed and simulated datasets show similar
structures but the day-to-day variations are not always the same.
As a result, the R2 values between observed and simulated datasets
are lower than for the sulfate factor, ranging from 0.2 to 0.5 (Table
2). High-frequency peaks likely influenced by local sources are not
simulated well by the model. This is partly because of the meteo-
rological model’s poor performance in simulating shorter time-
scale variations of the meteorological parameters.

A fresh motor vehicle factor is resolved from both the observed
and simulated datasets. It is represented by high concentrations of
CO, NO, and NOy and the inclusion of OC and EC (Fig. 4). It is labeled
here as ‘‘fresh motor vehicle factor’’ because of its high concen-
trations of NO which has a short lifetime in the atmosphere. Both
the factor profiles and factor contributions are different between
the simulated and the observational data. Comparing to the
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observations, smaller portions of NO and greater portions of CO
reside in this factor from the CMAQ results at the urban sites. This,
as in the case of the sulfate factor, can be the result of ‘‘smearing’’ in
the CMAQ results, limiting the ability to distinctly apportion NO
between the nitrate and motor vehicle factors. This mixing or
‘‘smearing’’ of factors, as well as the relatively coarse setup of the
vertical layers in CMAQ (limiting the model’s ability to simulate the
effect of mixing layer heights on ground level concentrations)
explain to some extent the discrepancies in seasonal patters
between observation and modeling results (Figs. 6 and 7). The OC/
EC ratios of this factor are in the range of 1.14–1.58 (Table 3). The
reported OC/EC ratio is typically 2.05 in fresh gasoline exhaust and
0.72 in diesel emissions (Cadle et al., 1999). Therefore, this factor
represents a mixture of diesel emissions and gasoline-powered
vehicles emissions. On average, the CMAQ results are lower at all of
the four sites (Fig. 6 and 7), likely due to the coarse grid used.
Discrepancies between observed and simulated temporal vari-
ability are due, in part, by the use of ‘‘typical’’ emissions in CMAQ,
while atypical traffic events are unaccounted for.

A mixed factor is also resolved at the four sites from simulated
and observed data. This factor is represented by high concentra-
tions of OC, EC and CO (Fig. 5). Wood smoke and some local
industry factors with high OC/EC ratios were resolved in a previous
study (Liu et al., 2004). The mixed factor resolved in the current
study is probably a combination of wood smoke, industry, and aged
motor vehicle sources. The resolved OC/EC ratios from CMAQ for
this factor are higher than those from the observational data (Table
3) at the urban sites, but are lower at the rural sites, which could be
related to differences in secondary organic aerosol formation
process between rural and urban locations. Without trace elements
like those used by Liu et al. (2004, 2006), we cannot resolve the
contributions of various sources to this factor, which leads to
additional uncertainties in the comparison. The input emission
inventory uncertainties (Mendoza-Dominguez and Russell, 2001)
and the meteorological model’s ability to capture fine temporal
scales may be the other reasons contributing to the disagreement
between CMAQ and observation data. Better coherence might
result from a finer grid resolution in the model, especially for the
urban sites, where there are more intense emissions with signifi-
cant chemical gradients (Sillman et al., 1990). Higher uncertainties
and poorer spatial representation have also been reported for
measuring EC and OC, which are the major elements in this factor
(Wade et al., 2006).

5. Summary

CMAQ simulations for a period of two years (2000 and 2001) are
evaluated using SEARCH observations in the southeast, both by
direct comparison to observations and by projection to the factor
space using PMF. Model performance for secondary species (sulfate,
ozone) is generally better than for primary species (EC, CO). Nitrate
concentrations are overestimated, mainly due to wintertime over-
partitioning to the particulate phase. Projecting both observed and
simulated constituents to the factor space using PMF, four common
factors, including sulfate, nitrate, a fresh motor vehicle, and a mixed
factor, are resolved and compared. Performance for the sulfate and
nitrate factors follow that of the corresponding driving species,
while the motor vehicle and ‘‘mixed’’ factors exhibit performance
corresponding to that of primary species. The OC/EC ratios of the
fresh motor vehicle factor reflect a mixture of gasoline and diesel
vehicle exhausts. The mixed factor is likely a combination of aged
motor vehicle, wood smoke, and some industry factors. The
comparison between observations and CMAQ simulations in the
projected space allow for an evaluation of the co-variability
between species, an indicator of source impacts. The fact that

similar factors were resolved by PMF from both the observations
and the CMAQ simulations suggests that temporal processes
related to emissions from specific source categories, as well as the
subsequent dispersion and reactivity, are well captured by
the CMAQ model. Adding trace elements in CMAQ would allow
a more detailed evaluation emissions and transport processes in
the model.
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