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A B S T R A C T

Satellite based particulate matter (PM) pollution monitoring on a regional basis is of importance due in part to
the adverse health effects of PM. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) derived
aerosol optical depth (AOD) data at 3 km and 10 km resolutions from both Terra and Aqua satellites were used,
in conjunction with the surface in situ data, to improve the regional distribution of ground-level PM2.5 over
Turkey. Five years (2011–2015) of heating season's (15th October to 14th May) in situ PM2.5 measurements from
7 monitoring stations in Ankara and 3 years (2013–2015) of the same data from 13 monitoring stations in
Marmara Region were used. Linear and non-linear regression models were used to find the relationship between
PM2.5 and AOD data. To improve the correlations between PM2.5 and AOD, the data points affected by free
tropospheric long-range transport were removed from the analysis via back trajectory modeling analysis since
long-range transport affects AOD more readily than surface PM2.5 data. Using non-linear models with the ad-
dition of meteorological parameters such as height of planetary boundary layer, surface temperature and surface
wind speed improved the correlations significantly. The best non-linear model can explain 61% (n= 37,
R2= 0.61, p < 0.001, RMSE=0.337 μg/m3) of PM2.5 variations at the Edirne Keşan site. It was found that
Terra worked better than Aqua. Furthermore, 10-km aerosol products gave better correlations with PM2.5 as
compared to the 3-km products. With the aid of spatiotemporal model, PM2.5 distribution maps are created for
the first time for Turkey.

1. Introduction

Atmospheric aerosols, liquid and solid particles suspended in air,
have been in the focus of scientific interest for the last 2 decades due to
their environmental impacts. Atmospheric aerosols, either released
from anthropogenic and natural sources or formed in the atmosphere
via secondary chemical reactions may contain inorganic ions (nitrate,
sulfate and ammonia), carbonaceous aerosols (organic or black carbon),
dust particles, and sea salt (Anderson et al., 2012; Fuzzi et al., 2015;
Tsai et al., 2011). Particulate matter (PM) pollution adversely affects
both ecosystems and human health in many ways. Particles enter the
aquatic and terrestrial ecosystems by means of dry and wet depositions
and alter the structure of ecosystems by means of reducing growth,
changing chemical composition and biogeochemical cycles (Grantz
et al., 2003). Black carbon plays an important role in climate change,
and deposition of secondary inorganic aerosols can cause eutrophica-
tion (Fuzzi et al., 2015). PM can have detrimental effects on human

health (Li et al., 2011). Particles with diameter less than 2.5 μm (PM2.5)
can enter bloodstream through the bronchial and pulmonary alveoli
and create serious health effects on cardiovascular and pulmonary
systems (Tsai et al., 2011; Wang et al., 2013b; Zhang et al., 2016).
Exposure to particles in pregnancy or early childhood reduces the child
weight (Kim et al., 2016). Another research states that exposure to
particulate pollution increases the risk of obesity and metabolic syn-
drome (Wei et al., 2016). Effects of particulate pollution on human
health are well discussed in literature (Anderson et al., 2012; Kim et al.,
2015; Polichetti et al., 2009).

Due to its adverse effects, monitoring of particulate pollution has
become increasingly important in recent years. It generally relies on air
quality monitoring stations (AQMS). However, lack of spatial coverage
of AQMS is an important challenge. On the other hand, Earth ob-
servation from the sensors of satellites (remote sensing) can be used as a
complementary monitoring tool to determine the current level of air
quality (Michaelides et al., 2018). Remote sensing is a cost effective
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way of observing ground level air pollution when in situ monitors are
unavailable or too sparse (Hu et al., 2014). The Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument (installed onboard
NASA's two Earth Observing System (EOS) satellites: Terra and Aqua) is
widely used for aerosol monitoring purposes. Aerosol Optical Depth
(AOD) (also referred to as Aerosol Optical Thickness, AOT) is the in-
tegral of extinction coefficient of aerosol column from the surface to the
top of the atmosphere. On the other hand, in situ measurements of PM
represent the surface loading of aerosols (Guo et al., 2009). The pre-
sence of aerosols in an atmospheric column changes the measure of the
light extinction of sunlight at a certain wavelength due to scattering and
absorption (Zhang et al., 2016). Therefore, AOD and PM is directly
related and certain conversion factors are needed (Guo et al., 2009;
Kloog et al., 2015, 2014). In order to find a better relationship between
AOD and PM2.5, multivariate regression models are recently used with
the addition of local meteorological parameters such as cloud cover,
planetary boundary layer height, relative humidity, wind speed, wind
direction and surface temperature (Guo et al., 2017; Lin et al., 2015).
Some other researchers included land use information (such as forest
cover, topography, elevation, open spaces, and urban percentage),
emission inventory and site specific factors (like surface reflectivity,
population density, and traffic density) as well in multivariate regres-
sion models (Hu et al., 2014; Kloog et al., 2011; Liu et al., 2007; Ma
et al., 2016; Sorek-hamer et al., 2015; Xie et al., 2015). Song et al.
(2015) used MODIS AOD data, meteorological variables, coordinates
and other pollutants (CO, SO2, NO2 and O3) as independent variables in
their generalized addictive model to predict PM2.5 concentrations in
Xi'an City of China. Moreover, other satellite derived data such as
MODIS fine mode fraction (FMF) can also be included in the statistical
analysis (Zhang and Li, 2015).

As a European Union (EU) candidate country, Turkey has been
trying to reach the air quality standards as stated in EU Directives. The
Ministry of Environment and Urbanization is aimed at reaching the
attainment of criteria pollutants in 2019 and 2024 for harmonization of
air quality legislation with EU. In last two decades, air quality mon-
itoring stations have been established in every city in Turkey. However,
most of these stations are located in urban areas, and the rural coverage
is quite limited. Moreover, old stations only measures PM10 (Particulate
Matter with aerodynamic diameter less than 10 μm) and SO2 (Sulfur
dioxide) as pollutants. Only a few AQMS, located in Ankara and newly
established stations in Marmara region, measure PM2.5. The other parts
of the Turkey lack of PM2.5 records. Moreover, there is not a standard
for PM2.5 neither in Turkish air quality legislations nor in Turkish Air
Quality Index. United States Environmental Protection Agency (EPA),
World Health Organization (WHO) and European Union threshold va-
lues for PM2.5 are 35 μg/m3, 25 μg/m3 and 25 μg/m3 respectively (24 h
averaging time).

In literature, although there are several studies related with PM2.5

measurement in Turkish cities, only two of the published studies use
remote sensing technology. Some of these studies dealt with chemical
composition (Kendall et al., 2011; Onat et al., 2013; Pekey et al., 2010;
Szigeti et al., 2013), and others focused on source apportionment
(Koçak et al., 2007; Yatkin and Bayram, 2008), size characterization
(Karaca et al., 2005) or traffic related emissions (Gaga et al., 2018; Onat
et al., 2019). PM2.5 levels measured in these studies are briefly sum-
marized in Table 1. To our knowledge, there are only two studies that
focus on atmospheric PM in Turkey by means of MODIS data. One paper
investigates the contribution of Saharan dust in PM10 concentrations in
Turkey (Kabatas et al., 2014). The other study tried to find correlation
by simple linear regression between Terra MODIS AOD and daily
average PM2.5 concentrations at Marmara Region (Öztaner et al., 2015).
It can be concluded that PM2.5 monitoring by remote sensing is a quite
new subject in Turkey. This is the first comprehensive study which uses
remote sensing techniques in greater detail for PM2.5 monitoring in
Turkey. The aim of this paper is to find a relationship between MODIS
AOD data and ground based measured PM2.5 concentrations in Turkey.

The organization of this paper is as follows. In Section 2, the study area
is described and the methods of gathering and processing data (satellite
observations, ground based measurements and meteorological data
both for regression models and back trajectory analysis) are outlined.
Results and Discussion (Section 3) contains the analysis of PM2.5 mea-
surements, analysis AOD retrieval rates, back trajectory modeling re-
sults and statistical relations between PM2.5 and AOD. The conclusion is
given in Section 4.

2. Materials and methods

2.1. Data

In this study, four different types of datasets are used: (1) PM2.5

mass concentrations of ground measurements, (2) Aerosol Optical
Depth data from MODIS onboard Terra and Aqua satellites, (3) National
Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) meteorological data, and (4) Global Reanalysis Data
for back trajectory analysis.

2.1.1. Study area and PM2.5 measurements
As stated in previous section, PM2.5 monitoring is a quite new

concept for Turkey. At the end of 2015, the air quality of Turkey is
continuously being monitored by 195 stations and 4 mobile stations.
However, there are only 20 stations measuring PM2.5. 7 of these sta-
tions, located in Ankara – the capital city of Turkey, have been re-
cording PM2.5 since 2010. Newly installed 13 stations have been mea-
suring fine particulate matter since 2013 in Marmara Region. The
names and coordinates of the stations in Ankara and Marmara Region
are listed in Tables 2 and 3 respectively. Table 3 also contains some
spatial information that will be used in a spatiotemporal model. Station
coordinates, elevation data, and county area information were obtained
from the Ministry of Environment and Urbanization. Population in-
formation was taken from the Address Based Population Registration
System. Finally, daily number of vehicles was gathered from the Traffic
Volume Maps published by the General Directorate of Highways. Both
highways and state ways were taken into account. The word “MTHM”
in the station names stands for Marmara Clean Air Center. Fig. 1 shows
the locations of these stations. Ankara, the capital city of Turkey, is a
highly urbanized city with continental climate (cold and semi-arid).
İstanbul, Bursa, Kocaeli and Tekirdağ are highly industrialized cities in
Marmara region. Marmara (Transitional) Climate and Black Sea Cli-
mate (near the Black Sea shore line) are observed in this area. More-
over, continental climate is seen in inner parts of this region.

Ground level PM2.5 mass concentration data are obtained from
Turkish Air Quality Monitoring Stations Web Site (NAQMS, 2016).
Daily and hourly measurements are accessible via web site. Hourly
PM2.5 measurements of 20 stations were downloaded.

2.1.2. Remote sensing data
Both Terra and Aqua satellites rotate around the Earth in sun-syn-

chronous, near polar, circular orbit (705 km). Terra was launched on 18
December 1999, and Aqua was launched on 4 May 2002 (Kloog et al.,
2011; Papadimas et al., 2009; You et al., 2016). Terra and Aqua sa-
tellites have been observing Earth since February 2000 and June 2002
respectively (Levy et al., 2010; Wang et al., 2013a,b). Aqua passes the
equator at 13:30 local solar time (afternoon orbit) in the south-north
direction (ascending mode) and Terra passes the equator at 10:30 local
solar time (morning orbit) in the opposite direction (descending mode)
(Emili et al., 2010; Li et al., 2011; Papadimas et al., 2009). MODIS
instruments are capable of retrieving data in 36 spectral bands from
blue to thermal infrared part of the spectrum (0.41–14.4 μm). The
swath width of MODIS is about 2300 km. The temporal resolution of
MODIS is 2 days globally, 1 day at mid-latitudes (greater than 30°)
(Liang et al., 2006; Wang et al., 2013a,b).

In this study, MODIS AOD products which is also referred to as AOT
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products are used (Kloog et al., 2014). MODIS AOD data give possibility
to estimate ground level PM pollution. MODIS AOD is more sensitive to
PM2.5 at 550 nm. Although most studies focused on PM2.5, some studies
centered upon PM10 since PM2.5 monitoring is rare except North
America and Western Europe (Streets et al., 2013; Wang et al.,
2013a,b).

MODIS Dark Target aerosol product has a spatial resolution of
10 km at nadir and labeled as Level 2 (MOD04_L2 for Terra and
MYD04_L2 for Aqua). MODIS Dark Target aerosol products have be-
come quite popular among the air quality community for estimating
particulate pollution. Because of coarse resolution, it was difficult to
identify the local effects in exposure studies. Therefore, a new MODIS
aerosol product with finer resolution was needed. The MODIS team
released the Collection 6 dataset with AOD products of a 3 km resolu-
tion in 2014. New Level 2 files with 3 km resolution are label as
MOD04_3K and MYD04_3K for Terra and Aqua respectively (Remer
et al., 2013; Xie et al., 2015). In this study, MODIS AOD data retrieved
from Terra and Aqua satellites are used with both 10 and 3 km re-
solutions.

Aerosol products are processed and archived by MODIS Adaptive
Processing System (MODAPS) at NASA's Goddard Space Flight Center.
These files can be downloaded freely from Goddard Space Flight Center
web site (NASA, 2016). AOD data uses Hierarchical Data Format (EOS-

HDF) which has lots of Science Data Sets (SDS) (Levy et al., 2010; Wang
et al., 2013a,b). In literature, several SDS are used for estimation of
particulate matter: Optical_Depth_Land_And_Ocean (Cheng et al., 2012;
Liu et al., 2007; You et al., 2016), Im-
age_Optical_Depth_Land_And_Ocean (at 550 nm with Quality Assurance
Confidence Flag= 2 and 3) (Ma et al., 2014), Corrected_Opti-
cal_Depth_Land and Effective_Optical_Depth_Average_Ocean (Bennouna
et al., 2011). Some studies suggest using quality flags for daily data
analysis (Gupta and Christopher, 2008). Among these Science Data Sets
(SDS), Optical_Depth_Land_And_Ocean, which uses the Dark
Target algorithm, measures AOD at 0.55 μm for both Ocean (best) and
Land (corrected) with best quality data (QA Confidence Flag=3).
These SDS data are available for both 3-km and 10-km aerosol products.
In contrast, the Deep_Blue_Aerosol_Optical_Depth_550_Land SDS, using
the Deep Blue algorithm, is available only at a resolution of 10 km.
There is no corresponding 3-km product. For this reason, the Opti-
cal_Depth_Land_And_Ocean SDS products for both 3-km and 10-km re-
solutions were used in this study to investigate if the higher-resolution
product is better correlated with surface PM2.5 concentrations.

2.1.3. Meteorological data
In order to develop multivariate regression models to predict

ground level fine particle concentration, some meteorological variables
are needed. The meteorological data were obtained from National
Center for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) web page (NCEP, 2016). NCEP provides high re-
solution (approximately 0.2°) data in global scale. Only temperature
(T), u-component of wind, v-component of wind, relative humidity
(RH), height of planetary boundary layer (HPBL) parameters from
Version 2 data set were downloaded. U and V components of wind were
used to calculate wind speed (WS).

2.1.4. Back trajectory data
To further improve regression models, long range transport of par-

ticulate matter in free troposphere (between 2000 and 10,000m) must

Table 1
PM2.5 levels in some Turkish cities.

City Locations Period PM2.5 concentration (μg/m3) Reference

İstanbul near the Büyükçekmece Lake July 2002–July 2003 20.8 Karaca et al. (2005)
Mersin Erdemli (36° 33′ 54″ N, 34° 15′ 18″ E) April 2001–April 2002 9.7 Koçak et al. (2007)
Zonguldak 41.4508° N, 31.7726° E December 2004–October 2005 29.1 Tecer et al. (2008)
Kocaeli 15 different locations May 31–June 29, 2006 December 16, 2006–January 20, 2007 23.5 (summer) 21.8 (winter) Pekey et al. (2010)
Erzurum Erzurum Regional Directorate of Highways February 2005–February 2006 13 Bayraktar et al. (2010)
Bursa Nilüfer May 2007–April 2008 53 Kendall et al. (2011)
İstanbul Maslak (47°30.6′ N, 19°1.8′ E) June 2010–May 2011 40 Szigeti et al. (2013)
İstanbul Kültür University Campus 24 April–24 May 2009 40.5 Onat et al. (2013)
İzmir Bozköy, Aliağa July 2009–April 2010 28.3 Kara et al. (2015)

Table 2
Air quality monitoring stations in Ankara.

AQMS Name StID Latitude Longitude

Ankara Bahçelievler S01 39.91806 32.82278
Ankara Demetevler S02 39.96750 32.79556
Ankara Dikmen S03 39.89639 32.84056
Ankara Kayaş S04 39.92528 32.92667
Ankara Keçiören S05 39.96722 32.86278
Ankara Sıhhıye S06 39.92752 32.85947
Ankara Sincan S07 39.97194 32.58500

Table 3
Air quality monitoring stations in marmara region.

AQMS Name StID Latitude Longitude Elevation (m) County Area (km2) 2015 Population 2015 Vehicles

Bursa Uludağ Uni MTHM S08 40.22333 28.87139 289 Nilüfer 552 397,303 76631
Çanakkale Lapseki MTHM S09 40.40306 26.77056 12 Lapseki 821 25,865 4805
Edirne Karaağaç MTHM S10 41.65889 26.53722 36 İpsala 741 28,249 6896
Edirne Keşan MTHM S11 40.85111 26.63528 111 Keşan 1098 81,054 18,283
İstanbul Kağıthane MTHM S12 41.09222 28.97472 43 Kağıthane 15 437,942 167,397
İstanbul Silivri MTHM S13 41.07306 28.25528 8 Silivri 858 165,084 75,117
İstanbul Ümraniye MTHM S14 41.02417 29.09972 149 Ümraniye 46 688,347 205,430
Kocaeli Gölcük MTHM S15 40.72583 29.79444 29 Gölcük 217 152,607 120,480
Kocaeli Kandıra MTHM S16 41.13056 30.00639 48 Kandıra 840 48,937 2601
Sakarya Ozanlar MTHM S17 40.79056 30.39667 26 Adapazarı 324 269,079 18,742
Tekirdağ Çerkezköy MTHM S18 41.31833 27.98000 146 Çerkezköy 86 133,626 10,483
Yalova Altınova MTHM S19 40.70056 29.50778 16 Altınova 113 24,140 29,342
Yalova Armutlu MTHM S20 40.52917 28.78444 21 Armutlu 166 8492 4000a

a Assumed value due to lack of data.
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be eliminated. The Saharan Desert emits half of the global dust emis-
sions and these emissions are associated with medium and long range
transport events (Michaelides et al., 2018). Furthermore, northern and
western parts of the Turkey are under the influence of long range
particulate transport from European countries (Kindap et al., 2006).
Thus, PM transport from Saharan Desert and polluted portions of
Europe should be determined by means of back trajectory modeling. In
order to apply 5 days back trajectory analysis, global meteorological
data are needed. Meteorological data were obtained from NCEP/NCAR
(National Center for Atmospheric Research) Reanalysis Data Archive
web site (NCEP/NCAR, 2016).

2.1.5. Temporal coverage
6 years PM2.5 concentration data (2010–2015) were available for

stations in Ankara, and 3 years PM2.5 concentration data (2013–2015)
were available for stations in Marmara Region. MODIS AOD image files
were downloaded for a period of 6 years (2010–2015). CFSR Version 2
contains data starting from January 1, 2011. Therefore, meteorological
data set covers the period of 2011–2015. To sum up, the temporal
coverage of data used for Ankara stations are in the period of 2011 and
2015. Due to the lack of PM2.5 measurements, the data of Marmara
Region stations are only for the 2013–2015 period.

2.2. Data integration

Different data sets should be integrated both spatially and tempo-
rally for each site, so as to find a relationship between PM2.5 and AOD.
Hourly ground based PM2.5 measurements require no further proces-
sing. However, AOD data requires some processing. MODIS AOD data
uses a sinusoidal projection. In order to obtain an AOD value for certain
latitude and longitude, hdf files must be converted to geotiff format. For
this reason, HEG-Tool (HDF-EOS to GeoTIFF Conversion Tool) was
used. HEG-Tool also allows user to make spatial subsets of a certain
location in order to decrease processing time. In this study, the upper
left corner of subset is 42N 26E and the lower right corner is 39.5 N

33.5 E. After converting hdf files to geotiff format, these files were
processed to compute AOD data at the coordinates where air quality
monitoring stations located. Date and time information are available in
MODIS files to generate a corresponding AOD and surface PM dataset.

The first step to investigate the relation between PM2.5 and AOD, is
the development of a simple linear regression model. Nevertheless, as
stated in literature (Guo et al., 2009; Kloog et al., 2015, 2014), AOD and
PM2.5 are not strongly correlated. In order to find a better relationship
between AOD and PM2.5, multivariate regression models are recently
used with the addition of local meteorological parameters such as
planetary boundary layer height, relative humidity, wind speed and
surface temperature (Kloog et al., 2011; Sorek-hamer et al., 2015).
These parameters were processed for the locations the air quality
monitoring stations and added to the dataset.

Before the development of any regression model between AOD and
PM2.5, it is important to separate the particulate pollution in the
boundary layer and free troposphere (Koukouli et al., 2010). Kumar
et al. (2007) mentioned that good correlations are found between PM2.5

and AOD if particles are within the boundary layer. Li et al. (2011)
stated that long range transport may influence both air quality and the
performance of statistical models. In the presence of long range trans-
port (dust or smoke), poor or no correlations were observed. Therefore,
the dust transport from Saharan deserts and particulate transport from
Europe in free troposphere were investigated. Floutsi et al. (2016) ex-
amined the aerosol characteristics on the Mediterranean Basin over 12
years (between 2002 and 2014) by using Aqua MODIS AOD and re-
ported that the dust events are observed in Eastern Mediterranean
generally in spring and sometimes in winter months. Several studies
reported that air quality in Turkish cities is under the influence of long
range transport of aerosols (Agacayak et al., 2015; Kabatas et al., 2014;
Karaca et al., 2009; Kindap et al., 2006). In order to decide transported
particulate matter days, backward trajectory analysis was performed. A
GIS based software called TrajStat (Wang et al., 2009), which runs
HYSPLIT (The Hybrid Single-Particle Lagrangian Integrated Trajectory)
model, was used for trajectory analysis. 5-day back trajectories were

Fig. 1. Geographic locations of PM2.5 measuring AQMS sites in Turkey (at the end of 2015).
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initiated at 12:00 UTC every day. 5 years (2011–2015) and 3 years
(2013–2015) back trajectories are generated for stations located in
Ankara and Marmara Region respectively. Then cluster analysis was
applied to merge trajectories into clusters. Nine clusters were obtained.
PM2.5 and AOD data pairs were removed if their trajectories clustered in
the free troposphere (at 5000–7500 m) originated from Saharan Desert
or PM polluted regions of Europe. The EMEP officially reported emis-
sion Data (http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_
emepdatabase/gridded_data/) were used to determine the polluted
areas of Europe. If the trajectories passed through EMEP high emission
grid cell with a probability of 60% or higher, the AOD and PM data
pairs were excluded in the analysis.

2.3. Model development

In order to develop regression models to presume PM2.5 con-
centrations JASP statistical software (JASP, 2018) were used. Several
linear and non-linear models (Eqs. (1)–(4)) were applied to find a re-
lationship between PM2.5 concentration and AOD from Terra and Aqua
MODIS retrievals.

= +PM α β ·AOD2.5 1 (1)

= + +PM α β ·(AOD/HPBL) β ·(AOD/WS)2.5 1 2 (2)

= + + +ln(PM ) α β ·ln(HPBL) β ·(RH) β ·ln(AOD)2.5 1 2 3 (3)

= + + + +

+

ln(PM ) α β ·ln(HPBL) β ·ln(T) β ·ln(WS) β ·ln(RH)

β ·ln(AOD)
2.5 1 2 3 4

5 (4)

where PM2.5 is hourly measured ground-based PM2.5 mass concentra-
tion (μg/m3), AOD is Aerosol Optical Depth at 550 nm (unitless) re-
trieved from either Terra or Aqua MODIS, HPBL is height of planetary
boundary layer (m), T is surface temperature (K), RH is surface relative
humidity (%), WS is surface wind speed (m/s), α is intercept and β1 - β5
are regression coefficients.

Since HPBL and other meteorological variables together with
MODIS AOD data could not be used to create a PM2.5 distribution map,
some spatial parameter like AQMS elevation, population and area of a
county, population density and number of vehicles were added to the
regression equation. AQMS of Ankara were quite close to each other,
thus the spatiotemporal model (Eq. (5)) was only applied for Marmara
Region. In spatiotemporal modeling, both spatial and temporal pre-
dictors of PM2.5 can be included in the regression equation together
with AOD data. Spatial predictors are topography data (digital eleva-
tion), land use data (land type, population density etc.), and particulate
emissions related data (point, area and line sources) whereas temporal
predictors are meteorological parameters, NDVI (Normalized difference
vegetation index) and HPBL (He and Huang, 2018; Hu et al., 2017;
Kloog et al., 2014; Zhai et al., 2018). In this study, all variables in
Table 3 were added to the regression equation and the solution was
computed using the backward method. The backward method re-
peatedly eliminates one independent variable from the regression
equation if the p value of that variable is insignificant until it finds a
significant model.

= + + + +

+ + + + +

+ + + + + +

+ + + + +

ln(PM ) α β ·ln(HPBL) β ·ln(T) β ·ln(WS) β ·ln(RH)

β ·ln(AOD) β ·HPBL β · T β ·WS β ·RH

β ·AOD β · E β ·ln(E) β · P β ·ln(P) β · A

β ·ln(A) β ·PD β ·ln(PD) β · V β ·ln(V)

2.5 1 2 3 4

5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20

(5)

where E is station elevation (m), P is the population of a county which
contains AQMS in at the end of 2015, A is the area of a county (km2),
PD is the population density, V is the daily average of sum of vehicles in
state ways and highways, α is intercept and β1 - β20 are regression
coefficients.Ta
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2.4. Model validation

The performances of regression models were determined by statis-
tical measures like the Pearson correlation coefficient (R) (Equation
(6)) and root mean squared error (RMSE) (Equation (7)) (Sathe et al.,
2019).

=
∑ − −

∑ − ∑ −
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C C C C

C C C C

( ¯ )( ¯ )

( ¯ ) ( ¯ )
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2 2
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(7)

where, Cp and Co are the predicted and observed PM2.5 concentrations
respectively and n is the number of observations.

3. Results and discussion

3.1. Analysis of PM2.5 measurements

Tables 4 and 5 list the heating season (H. S.) and non-heating season
(N. S.) averages of PM2.5 concentrations measured in Ankara and
Marmara Region respectively. Valid and missing data rates of PM2.5

measurements were provided in Supplement 1. Since PM related air
pollution problem is more important in winter season in Turkey, only
the heating season PM2.5 concentrations are included in regression
analysis. The heating season starts on 15th October and ends on 14th
May (212 days/year). Most of the stations in Ankara exceeded the
European Union (EU) PM2.5 standard value (25 μg/m3). This was ex-
pected due to the location and atmospheric conditions of Ankara. An-
kara is located in the valley, and in winter season inversion event occurs
frequently. None of the stations in Ankara met the threshold value in
2010–2011 heating season. As seen from Table 4, there was a slight
decrease in fine particulate matter concentrations over years. 4 stations
met the EU standard at the end of 2015 in Ankara. In Marmara Region,
Çanakkale Lapseki, Kocaeli Kandıra and Yalova Armutlu stations have
met the EU standard for PM2.5 pollutant for 2013–2015 period. Among
all stations, higher concentrations were recorded at Edirne Keşan and
Sakarya Ozanlar stations. Edirne Keşan was the most problematic place
with poor air quality due to domestic heating especially in winter
season. Main reasons of air pollution in Keşan are topographical
structure of city and poor quality of fuels (Özşahin et al., 2016). It is
clear from Tables 4 and 5 that particulate matter pollution generally
occurs and poses a threat for public health in the heating season.

3.2. MODIS AOD retrieval data availability

Ground measured PM2.5 data were correlated with 4 different

MODIS derived aerosol products: Aqua 3 and 10 km resolution AOD,
Terra 3 and 10 km resolution AOD. To analyze 6 years MODIS AOD data
in the study area, a total of 8288 (4144× 2) MODIS image files were
download from Goddard Space Flight Center website for Aqua 3 and
10 km aerosol data products. 7806 (3903× 2) MODIS images were
downloaded for Terra 3 and 10 km aerosol data products. More than
95 GB of data were analyzed. The number of valid and missing re-
trievals, and missing data rates for each station grid cell and each
aerosol product were shown in Supplement 2. It is seen from
Supplement 2 that on the average Terra 3-km aerosol product has lower
missing data rates (in other words more retrievals) in Ankara. For most
of the Ankara station pixels, AOD retrievals from Terra satellite have
more valid data than Aqua satellite. It may result from cloud formation
in the afternoon. Such difference was not found for stations in Marmara
Region. The retrieval rates of Terra and Aqua 10-km aerosol products
were better than that of 3-km aerosol products in Marmara Region.
Much lower retrieval rates were found in urban areas like İstanbul
Kağıthane, İstanbul Ümraniye and Kocaeli Gölcük. There were more
successful retrievals for rural areas such as Bursa Uludağ University,
Çanakkale Lapseki, Edirne Karaağaç, Edirne Keşan, Kocaeli Kandıra and
Sakarya Ozanlar. The explanation is that the Dark Target algorithm
performs better in vegetative areas (generally rural areas). Its perfor-
mance is worse in bright surfaces like deserts, urban areas and shor-
elines as compared to the Deep Blue algorithm (Martin, 2008; Sorek-
hamer et al., 2015). In this study, as seen from Supplement 2 that 10 km
aerosol products had more data points than 3 km aerosol products for
Terra and Aqua. The highest retrieval rate was observed at Edirne
Karaağaç with 28% AOD retrievals for Terra 10-km aerosol product
while the lowest retrieval rate was seen at Kocaeli Gölcük with 1% for
both Aqua and Terra 3-km resolutions.

Successfully retrieving AOD data is not easy. As stated in the lit-
erature (Gupta and Christopher, 2008; Remer et al., 2013), the pixel
must be cloud, ice and snow free. Favorable surface conditions (low
reflectance) are required for AOD retrieval. Moreover, some meteor-
ological conditions increase the chance of successful retrievals such as
deep boundary layers, low RH, low wind speed, and high air tem-
perature (Liu et al., 2009). Gupta and Christopher (2008) found the
availability of MODIS AOD of 47% for their 7 years study in South-
eastern United States. On the other hand, Emili et al. (2010) found this
value to be 17% in the European Alpine region in 2008 (at least one
observation either from Terra or Aqua).

3.3. Back trajectory modeling results

Cluster analysis was applied to the backward trajectory results to
determine the cases of long range transport of particulate pollution.
Fig. 2 shows an example result of clusters coming to one of the AQMS

Table 5
Average PM2.5 concentrations (μg/m3) for stations in Marmara Region.

AQMS 2012–2013 H. S.a 2013 N. S. 2013–2014 H. S. 2014 N. S. 2014–2015 H. S. 2015 N. S. 2015–2016 H. S.b

Bursa Uludağ Uni MTHM 27 22 35 21 31 27 33
Çanakkale Lapseki MTHM 18 18 21 18 20 15 17
Edirne Karaağaç MTHM 17 16 29 18 24 17 34
Edirne Keşan MTHM 53 26 77 30 81 28 104
İstanbul Kağıthane MTHM 34 25 45 22 38 20 41
İstanbul Silivri MTHM 22 17 28 14 24 15 24
İstanbul Ümraniye MTHM 37 26 39 23 34 19 31
Kocaeli Gölcük MTHM 27 17 35 16 27 14 25
Kocaeli Kandıra MTHM 15 12 22 12 18 10 22
Sakarya Ozanlar MTHM 36 23 62 23 46 21 51
Tekirdağ Çerkezköy MTHM 30 21 34 19 31 15 33
Yalova Altınova MTHM 29 20 31 22 26 19 25
Yalova Armutlu MTHM 21 19 23 19 21 18 18

a Starts on 1 March 2013.
b Ends on 31 December 2015.
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(Bursa Uludağ University MHTM) station between 2013 and 2015 (only
in heating seasons). Cluster 1 is originated from south east of United
Kingdom. That region is classified as a high PM2.5 emitting region ac-
cording to the EMEP map. Cluster 4 carries Saharan dust to the location
of interest. M2.5 measurements that fall into the long range transport
days were removed from our dataset. Removing long-range transport
effected data provided generally better correlations but reduced the
number of observations. As an example, the number of observations
and R values of Equation (4) before and after back-trajectory analysis
are provided in Supplement 3. As a result of back-trajectory analysis for
Eq. (4), R values increased in 37 cases, decreased in 23 cases and re-
mained the same in 8 cases.

3.4. AOD – PM2.5 regression analysis results

First of all, the regression equations for each AQMS station were
developed separately. It should be noted that dealing with only heating
season data (or eliminating the summer season data) reduced the size of
our dataset (n). Since most of the successful satellite retrievals were on
the summer season when the sky was clear and no snow covered on
ground. Moreover, removing long range particulate transport in free
troposphere again reduced the size of dataset. Lastly, some of the AOD
retrievals were not used due to lack of ground based PM2.5 measure-
ment on that day. Therefore, at some sites there weren't enough AOD
and PM2.5 data pairs (n < 25) to develop a regression model. The
largest data size was 100 data points at Ankara Sincan station for Terra
3 km resolution. Since AOD data show spatial differentiation, regression
models were developed for each site and for each MODIS aerosol pro-
ducts.

Firstly, the simple linear regression model was tried (Equation (1)).
There wasn't any strong correlation between PM2.5 and AOD data at any
of the stations. Correlations at all the sites were weak except the İs-
tanbul Silivri MTHM Station that showed a moderate correlation. At the
İstanbul Silivri MTHM Station, the highest value of correlation

coefficient (R) was 0.605 (n= 67) for Aqua 10 km resolution aerosol
product. Table 6 summarizes this linear model and the best regression
models obtained by using Equations (2)–(4). The linear model was able
to explain 36% of the data variance (R2=0.36). It has a slope of 79.9
and an intercept of 8.13 (p < 0.001, RMSE=10.677 μg/m3). Guo
et al. (2009) found slopes of their regression equations as 37 μg/m3 of
PM2.5 and 57 μg/m3 of PM2.5 when AOD is corrected for RH. They also
summarized the regression slopes of several studies and stated that this
value changes from 19 to 125 μg/m3 of PM2.5 in literature. Xin et al.
(2014) found an empirical relationship of
PM2.5 = 100.10·AOD + 12.13 (R2=0.57) for daily measurements of
PM2.5 over Northern China. They also stated that the slopes and inter-
cepts of linear regression equations change significantly for different
seasons. Xie et al. (2015) reported that their linear model has R2 value
of 0.47. You et al. (2016) found the linear model with R= 0.28
(R2= 0.08) between MODIS AOD and PM2.5. Another study tried to use
simple linear regression model between PM10 and MODIS AOD and
reported the R as 0.49 (R2=0.24) (Li et al., 2011). The correlation
between MODIS derived AOD and ground measured PM2.5 is generally
weak to moderate. However, finding a strong correlation is possible
with the help of improved retrieval algorithms. Wang et al., 2013a,b
found R2=0.75 for their linear model between AOD and PM2.5. It can
be concluded that simple linear regression was unsuccessful to explain
the relation between particulate matter and AOD only. In literature,
researchers generally use simple linear models to demonstrate their
non-linear or mixed models perform better than linear models (Li et al.,
2011; You et al., 2016).

In order to achieve better correlations, meteorological parameters
were included in the regression models. In Equation (2), planetary
boundary layer height and wind speed parameters were added to the
model together with AOD. This time regression model gave somewhat
improved results. There were 2 strong correlation sites, one of them was
at Ankara Demetevler Station with R= 0.850 (n= 25) for Terra 10 km
product. This model described 70% of ground level PM2.5 variance.

Fig. 2. Cluster analysis of HYSPLIT model for the period of 2013 and 2015 heating seasons at Bursa Uludağ University MTHM station.

Table 6
Summaries of best regression models obtained for single monitoring site.

Model Station MODIS AOD Product Model Summary

1 İstanbul Silivri MTHM MYD04_L2 n=67, R= 0.605, R2= 0.36, RMSE=10.677 μg/m3 (p < 0.001)
Coefficients: constant= 8.128 (p < 0.001), AOD=79.905 (p=0.002)

2 Ankara Demetevler MOD04_L2 n=66, R= 0.850, Adj. R2= 0.70, RMSE=23.518 μg/m3 (p < 0.001)
Coefficients: constant= 33.572 (p < 0.001), AOD/HPBL=67657.330 (p < 0.001), AOD/WS=−167.484
(p < 0.001)

3 Edirne Keşan MTHM MOD04_L2 n=60, R= 0.751, Adj. R2= 0.54, RMSE=0.481 μg/m3 (p < 0.001)
Coefficients: constant= 9.310 (p < 0.001), RH=0.008 (p=0.079), ln (HPBL)= -0.810 (p < 0.001), ln
(AOD)=0.122 (p= 0.163)

4 Edirne Keşan MTHM MYD04_3K n=37, R=0.790, Adj. R2= 0.62, RMSE=0.336 μg/m3 (p < 0.001)
Coefficients: constant= 96.295 (p=0.003), ln (HPBL)= -0.519 (p=0.003), ln (RH)= -0.363 (p=0.284),
ln(T)= -15.359 (p=0.002), ln (WS)= -0.120 (p= 0.245), ln (AOD)=0.144 (p= 0.030)
n=37, R= 0.781, Adj. R2= 0.61, RMSE=0.337 μg/m3 (p < 0.001)
Coefficients: constant= 82.769 (p=0.001), ln (HPBL)= -0.415 (p=0.003), ln(T)= -13.350 (p= 0.003), ln
(WS)= -0.173 (p= 0.060), ln (AOD)= 0.133 (p= 0.041)
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Although the correlation coefficients were significant, the root mean
square error (RMSE) value of this equation was calculated as 23.5 μg/
m3, much higher than that of using Equation (1). Another strong cor-
relation was found at Ankara Keçiören Station for Aqua 10 km product
(R= 0.851, n=26). 9 moderate correlations were also found (3 for
Terra 10 km, 2 for terra 3 km, 2 for Aqua 10 km and 2 for Aqua 3 km).

Having tried linear models, it is focused on developing non-linear
models. Emili et al. (2010) suggested a non-linear relation between
AOD and PM. Planetary boundary layer height, relative humidity and
AOD were included as separate variables in the model. Equation (3)
provided better results. Using the regression equation in non-linear
form sharply reduced the RMSE of the model. In total, it was found 4
strong correlation sites. For Terra 10 km resolution R values were 0.751
(n=60) and 0.735 (n=47) at the stations located in Edirne Keşan and
İstanbul Ümraniye, respectively. The regression equation obtained at
Edirne Keşan is given in Table 6. Model was able to describe 54% of
ground level PM2.5 variance. Using the non-linear model reduced the
RMSE value to less than 1. The coefficients for AOD and RH have po-
sitive signs which mean they have a positive association with PM2.5

concentration. HPBL showed a negative association with PM2.5 con-
centration since it has a negative sign. When the height of planetary
boundary layer increases, particulate matter becomes more diluted
because of large vertical mixing, therefore ground-level concentration
reduces (Liu et al., 2007; You et al., 2016). The results of this study are
similar to the literature. Positive AOD and negative HPBL terms were
found in another study (Emili et al., 2010). The regression model was
statistically significant (p < 0.001); on the other hand, this was not
true for coefficients (Table 6). Moreover, R=0.727 (n= 38) was ob-
tained by using Terra 3 km aerosol product at the İstanbul Ümraniye
station; we found R=0.702 (n=38) at the Yalova Armutlu station.

In model 4, AOD, planetary boundary layer height, relative hu-
midity, surface temperature and surface wind speed were included in
regression equation. A non-linear model with the aid of more meteor-
ological dependent variables gave much better correlations. There were
total 17 strong correlations between PM2.5 and AOD. 7 strong correla-
tions were obtained for Terra 10 km resolution at the following AQMS
stations: Ankara Demetevler, Ankara Sincan, Bursa Uludağ Uni MTHM,
Edirne Keşan MTHM, İstanbul Silivri MTHM, İstanbul Ümraniye
MTHM, Kocaeli Gölcük MTHM. There were 4 strong correlations for
Aqua 10 km resolution at Ankara Kayaş, Ankara Keçiören, Bursa Uludağ
Uni MTHM and Edirne Keşan MTHM stations. 3 strong correlations
were observed for 3 km resolution Terra products (Ankara Sıhhıye,
Edirne Keşan MTHM and İstanbul Ümraniye MTHM stations) and 2
strong correlations for 3 km resolution Aqua products (Edirne Keşan
MTHM and Yalova Armutlu MTHM). According to our results, it can be
concluded that 10 km resolution aerosol product worked better than
3 km resolution aerosol products. Similarly, AOD data obtained from
Terra satellite worked better than that of Aqua satellite. At Edirne
Keşan, it was found that for all 4 aerosol products, there were strong
correlations: R=0.834 (n=60, Terra 10 km), R=0.823 (n=23,
Terra 3 km), R=0.744 (n= 50, Aqua 10 km) and R=0.790 (n=37,
Aqua 3 km). In other words, both satellites at two different resolutions
were successful in predicting particulate matter concentration in Edirne
Keşan, which has serious air quality problems in recent years. In
Table 6, the best regression equation obtained for Model 4 is given for
Aqua 3 km product at Edirne Keşan. The model was statistically sig-
nificant, but p values of some of coefficients were not below 0.05.
Therefore, the backward method was applied to solve the regression
equation, which eliminated one or more variables until it found the
significant regression model. Most of the time, the RH term was
dropped out from the model since it failed from t-test as discussed by
Emili et al. (2010). On the other hand, Kumar et al. (2007) reported
that RH showed strong association with PM2.5 in Delhi Metropolitan
area. After that, the new model including AOD, HPBL, T and WS pre-
dictors is given in Table 6. This new model can explain 61% of ground
level PM2.5 variance. The AOD term had positive sign, which represent

positive association with PM2.5 concentration. On the other hand, all
meteorological parameters showed negative association with PM2.5

concentration. When the temperature decreases, people use more fuels
for heating, and therefore more PM is emitted to the atmosphere. Low
PM2.5 is measured at higher temperatures due to less need of fuels for
domestic heating. In windy conditions, higher wind speeds create more
dilution of particulates; therefore, PM2.5 concentration decreases (Hu
et al., 2014; Liu et al., 2007; You et al., 2016).

In multivariate models, more strong correlations were found using
AOD products from Terra satellite as compared to Aqua satellite. Terra
measurements are in the morning at 10:30 local time whereas Aqua is
an afternoon satellite. During the day, the mixing height tends to be
lower in the morning and becomes higher in the afternoon.
Consequently, ground based PM2.5 levels were higher in the morning
and lower in the afternoon. A recent study in China revealed that half of
the maximum PM2.5 cases occured in the morning, whereas only 5%
maximum occurred in the afternoon (Guo et al., 2017). Therefore, Terra
MODIS AOD correlated with ground based PM2.5 measurements better
than Aqua MODIS AOD since the emission contributed AOD fraction
was higher in the morning. Moreover, in this study, 10 km MODIS AOD
products gave better correlations as compared to 3 km MODIS AOD
products. The difference between these products is well discussed by
Remer et al. (2013). They stated that 3 km and 10 km products are
exactly same apart from the choice of reflectance pixels. Therefore,
3 km products may have a high-bias noise over bright and urban areas.
Remer et al. (2013) also concluded that 3 km resolution MODIS AOD
product is less accurate and less robust than 10 km resolution MODIS
AOD products. Similarly, He et al. (2017) compared both MODIS 3 km
and 10 km aerosol optical depths with ground based AERONET mea-
surements over China. They stated that 3 km resolution product per-
formed worse than 10 km product especially in bright surfaces like
Beijing. In our study, strong correlations were found for 3 km Aqua at
Yalova Armutlu, which is a rural place without strong surface re-
flectance. On the other hand, better correlations were found by using
10 km products at stations located in highly urbanized cities like An-
kara, İstanbul, Bursa and Edirne for Equations (3) and (4).

Up to now, only site specific correlations were on the focus. On the
other hand, the ultimate goal of remote sensing studies in air pollution
is to generate air pollution distribution maps. Therefore, ground based
PM2.5 measurements of all sites were analyzed using regression models
by using MODIS derived AOD and other meteorological parameters. In
contrast to the results presented previously, all of the regression
equations gave weak correlations. This makes it very difficult to create
a PM2.5 distribution map. The reason of weak correlations can be ex-
plained by complex meteorological structure of the Marmara region. As
indicated earlier in this paper, 3 different types of climate patterns are
observed in this region. A recent study showed that Turkey has 16 sub-
precipitation regime regions and 15 sub-climate regime regions (Sahin
and Kerem Cigizoglu, 2012). There are 3 sub-climate and 3 sub-pre-
cipitation patterns in the Marmara region. Therefore, separation of the
study area into several sub regions is necessary. Kahya et al. (2017)
performed hierarchical cluster analysis of PM2.5 measuring stations in
the Marmara region. They found 5 clusters for PM2.5 monitoring sta-
tions. İstanbul Ümraniye, İstanbul Kağıthane and Tekirdağ Çerkezköy
form first cluster. Bursa, Kocaeli Gölcük and Yalova Altınova are fall
into second cluster. Yalova Armutlu, Çanakkale Lapseki, Edirne Kar-
aağaç, İstanbul Silivri and Kocaeli Kandıra belong to third cluster.
Lastly, Edirne Keşan and Sakarya Ozanlar fall into two different clusters
alone. So these clusters were used in regression analysis to find better
correlation between MODIS derived AOD and ground based measured
PM2.5. Since clusters 4 and 5 contain only one station, no analysis were
performed for them. Equation (4) was the most successful model among
the four regression models. Therefore, only Equation (4) was used in
regression analysis. For the first cluster sites, 4 different MODIS AOD
products gave moderate correlations ranging from R=0.507 to
R=0.641. Air quality monitoring stations (İstanbul Ümraniye, İstanbul
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Kağıthane and Tekirdağ Çerkezköy) of cluster 1 are located in the same
sub climate and sub precipitation zones. As a result, similar correlations
were obtained for 4 different aerosol products in this cluster. For the
second cluster, two strong correlations were found for Aqua 3 km and
Terra 10 km aerosol products, R= 0.725 and R=0.706 respectively. A
moderate correlation (R=0.585) was obtained for Aqua 10 km;
whereas, the correlation was a weak for Terra 3 km resolution data.
Although the locations of monitoring sites in cluster 2 are closer, they
fall into two different sub climate and two different sub precipitation
zones. The complexity of meteorological conditions resulted in a wider
range of correlations. Finally, all correlations were weak for cluster 3
except a moderate correlation (R=0.509) for Terra 10 km aerosol
product. Monitoring stations in cluster 3 were geographically far from
each other as compared to the other clusters. That is the main reason
that the regression model gave weak correlation results. Table 7 shows
the best regression models obtained by using Equation (4) for cluster 2
sites.

AOD, HPBL and other meteorological variables did not provide
sufficient correlations for creating a PM2.5 distribution map. Therefore,
some spatial parameters like AQMS elevation, population and area of a
county, population density and number of vehicles were added to the
spatiotemporal model (Equation (5)) to create a distribution map. All of
the AOD data (obtained from both Aqua and Terra satellites with both
3-km and 10-km resolutions) for all stations in Marmara Region were
included in the model. Therefore, the size of dataset (n) was 1634. The
descriptive statistics of PM2.5, AOD, HPBL, RH, TEMP and WIND were
listed in Table 8. Other spatial parameters were previously listed in
Table 3. Table 9 showed the model summary after backward method
solution of Eq. (5). A moderate correlation was obtained with
R= 0.593. This model could explain nearly 35% of variance in PM2.5

concentrations (RMSE=0.576 μg/m3, p < 0.001). Only the p value of
AOD terms was not below 0.05, but the backward method did not drop
this term from the solution. Fig. 3 shows the scatter plots between
measured and spatiotemporally predicted ln (PM2.5) concentrations.
Inverse Distance Weighted (IDW) interpolation method was used for
distribution maps. As a result, PM2.5 distribution maps were created

successfully. Average PM2.5 distribution maps in heating seasons (a:
2012–2013, b: 2013–2014, c: 2014–2015 and d: 2015–2016) were
given in Fig. 4. Maps showed similar distribution patterns over the
years. According to the Fig. 4, PM2.5 pollution levels were above EU
threshold in Edirne Keşan, Sakarya Ozanlar, Yalova Altınova and cen-
tral parts of İstanbul Province.

Table 7
The best regression equations obtained for cluster 2 cities.

Model MODIS AOD Product Model Summary

4 MYD04_3K n=30, R=0.725, Adj. R2= 0.426, RMSE=0.414 μg/m3 (p=0.002)
Coefficients: constant=−51.183 (p= 0.205), ln (HPBL)= -0.598 (p= 0.004), ln (RH)= -0.007 (p= 0.986), ln(T)= 10.422 (p=0.141), ln
(WS)= -0.219 (p= 0.058), ln (AOD)= 0.197 (p= 0.107)
n=30, R= 0.725, Adj. R2= 0.449, RMSE=0.406 μg/m3 (p < 0.001)
Coefficients: constant=−51.545 (p= 0.127), ln (HPBL)= -0.598 (p= 0.003), ln(T)= 10.481 (p=0.084), ln (WS)= -0.219 (p= 0.050), ln
(AOD)=0.197 (p= 0.087)

4 MOD04_L2 n=74, R= 0.706, Adj. R2= 0.461, RMSE=0.515 μg/m3 (p < 0.001)
Coefficients: constant=−12.794 (p= 0.677), ln (HPBL)= -0.463 (p < 0.001), ln (RH)= -0.624 (p=0.057), ln(T)=3.963 (p= 0.457), ln
(WS)= -0.363 (p= 0.005), ln (AOD)= 0.229 (p= 0.015)
n=74, R= 0.703, Adj. R2= 0.465, RMSE=0.513 μg/m3 (p < 0.001)
Coefficients: constant= 10.069 (p < 0.001), ln (HPBL)= -0.421 (p < 0.001), ln (RH)= -0.794 (p < 0.001), ln (WS)= -0.371 (p=0.004), ln
(AOD)=0.238 (p= 0.010)

Table 8
Descriptive statistics of PM2.5, AOD, HPBL, RH, TEMP and WIND for the spa-
tiotemporal model (n= 1634).

PM2.5

(μg/m3)
AOD HPBL (m) RH (%) TEMP (K) WIND

(m/s)

Mean 31.3 0.174 914.9 56.81 289.2 3.537
Median 25.0 0.141 796.5 56.50 289.0 3.127
Std. Deviation 26.9 0.125 574.7 13.79 5.3 2.129
Minimum 1.0 0.001 23.0 21.80 271.5 0.028
Maximum 340.0 1.010 3226.0 100.00 305.3 13.060
25th percentile 15.0 0.086 445.8 46.58 285.2 1.958
50th percentile 25.0 0.141 796.5 56.50 289.0 3.127
75th percentile 39.0 0.230 1285.0 66.30 292.4 4.647

Table 9
Spatiotemporal model summary for Marmara Region (n= 1634, R= 0.593,
Adj. R2=0.346, RMSE=0.576 μg/m3 (p < 0.001)).

Model predictors Coefficient p value

constant −1.750 p < 0.001
AOD −0.373 p=0.093
ln (AOD) 0.194 p < 0.001
HPBL −4.056e-4 p < 0.001
WS −0.055 p < 0.001
E −0.006 p < 0.001
ln(E) 0.544 p < 0.001
P 9.787e-7 p < 0.001
A −1.548e-4 p= 0.046
PD 2.454e-5 p < 0.001
ln (PD) −0.158 p < 0.001
V −1.190e-5 p < 0.001
ln(V) 0.567 p < 0.001

Fig. 3. Scatter plot of measured and spatiotemporally predicted ln (PM2.5)
concentrations.
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4. Conclusions

In Turkey, there were some studies related with PM2.5 pollutant.
However, they were site specific. Only one study used remote sensing
data with a linear correlation analysis. To our knowledge, this is the
first comprehensive study which used MODIS derived AOD data to
explain the ground measured concentrations of PM2.5 over Turkey. This
study was performed for the period of 2011–2015 at the Ankara stations
and the period of 2013–2015 at Marmara stations. In this study, the
retrieval availability of MODIS 10 km resolution aerosol product was
better than 3 km aerosol products. After eliminating long range PM
transport cases, four regression models were developed to predict
ground level concentrations of PM2.5 for the heating season. All re-
gression equations were evaluated separately for four different types of
aerosol products and at all sites. The correlation coefficients of the
simple linear regression model between PM2.5 and AOD were weak at
all stations except one moderate correlation site. In order to obtain
better results, HPBL and some meteorological parameters were added
into the models, and nonlinear models were developed. Inclusion of
meteorological parameters except relative humidity improved the
model performance significantly. Non-linear models had much lower
RMSE values as compared to that of linear models. In our study, the
MODIS derived AOD data from Terra satellite worked better than that
of Aqua satellite since the emission contributed AOD fraction was
higher in the morning. Moreover, 10 km resolution products
(MOD04_L2 and MYD04_L2) gave better correlations than 3 km re-
solution products (MOD04_3K and MYD04_3K). All aerosol products
were successful at the Edirne Keşan station, which suffers from serious
particulate pollution. Observing air quality via remote sensing is
especially important in countries like Turkey which has a limited
number of air quality monitoring stations. With the aid of spatio-
temporal model that used remotely sensed AOD data, PM2.5 distribution
maps were created for the first time for Turkey. Therefore, it can be
concluded that MODIS AOD data can be used as a useful tool to infer
PM2.5 concentrations when coupled with meteorological and spatial
information.
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