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a b s t r a c t

We apply satellite fire detection products and air quality modeling to study the contribution of fire
emissions to ambient aerosol concentrations over the southeastern U.S. We find that satellite MODIS fire
counts show more extensive summer burnings than suggested by the bottomeup fire inventory VISTAS
in the summer of 2002. We develop a hybrid emission inventory that combines information from sat-
ellite fire counts and the bottomeup inventory by scaling the data of topedown fire count in the other
months with its ratio to the bottomeup burned area data in March, the month of most prescribed
burning in the Southeast in 2002. Such computed burned areas in summer are higher than the bottom
eup inventory in summer; the increase of fire emissions is spatially allocated over satellite observed fire
pixels based on the spatial distribution of fuel loading. We show that the updated fire emission inventory
leads to notably improved CMAQ model performance of OC, EC and PM2.5, in the Southeast on a regional
basis, with reduced model low bias in the summer and better agreement with the observed seasonality.
Our study suggests that missing fire emissions in bottomeup inventories can partially explain the
underestimated concentrations of PM2.5, OC and EC in the Southeast and demonstrates that satellite fire
detection can help improve our understanding of fire emissions and their impact on air quality.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Summertime aerosol loadings are largely underestimated by air
quality models, especially in the southeastern United States, where
secondary organic aerosol (SOA) is believed to be a large aerosol
component (e.g. Mebust et al., 2003; Morris et al., 2006; Zhang
et al., 2006). To overcome the model deficiency, two aspects of
efforts have been made. The first is to improve the emission in-
ventories used as model emissions inputs, such as the periodically
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released National Emission Inventory by US EPA, to better account
for the primary aerosol components. Another aspect of efforts fo-
cuses on improving the modeling of secondary components,
especially SOA, which have been shown to account for some of the
‘missing sources’ (e.g. Takekawa et al., 2003; Lim et al., 2005;Morris
et al., 2006; Ng et al., 2007; Robinson et al., 2007). The relative
contributions of primary and secondary aerosol components vary
significantly in different regions (Zeng and Wang, 2011). Among
those various primary emissions, biomass burning has been shown
to increase total aerosol loading through emissions of carbonaceous
materials (Zeng and Wang, 2011). In this study, we use satellite fire
detection to constrain the fire emission inventory in the south-
eastern United States, followed by testing the updated fire emission
inventory though evaluation of air quality modeling results with
observed data of aerosol abundance and composition.
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Fig. 1. Spatial distribution of MODIS Terra fire counts over the 10 southeastern states in
summer (JJA) 2002.
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Satellite fire products have been used to constrain bottomeup
fire emission inventories by virtue of their extensive spatial
coverage, especially over remote regions wheremissing fire activity
records occur frequently in bottomeup inventories (e.g. Soja et al.,
2009). Continuous fire monitoring can be achieved by geosta-
tionary satellites, such as the NOAA Geostationary Operational
Environmental Satellites (GOES) (http://www.osdpd.noaa.gov/ml/
land/hms.html). Hybrid fire emission products, such as the
SMARTFIRE dataset (http://www.getbluesky.org/smartfire/
webservice.cfm), have also been generated by combining satellite
fire detection and ground reports. Soja et al. (2009) compared these
two types of fire emissions products. A key challenge in combining
the two types of data is the lack of temporal or spatial consistency
in fire occurrence from the two approaches (van de werf et al.,
2006), which calls for a careful crosscheck and consolidation of
fire emissions inventory and satellite observations at different
spatial and temporal scales.

In this study, we use MODIS fire products from two satellites, i.e.
Aqua and Terra, in conjunction with a bottomeup fire emission
inventory, to estimate the contribution of biomass burning to
aerosols in the Southeast. Data from Terra and Aqua satellites are
compared and merged together based on their statistical correla-
tion. A new method is developed to combine information from
satellite observations and the fire inventory into a hybrid inventory.
Results from model sensitivity simulations show that using the
hybrid inventory simulates carbonaceous aerosol concentrations
that are in better agreement with the observations. In particular,
satellite data reveal a summer burning peak in the Southeast in
2002, which is not present in the bottomeup inventory, and helps
to reduce the summertimemodel low bias of PM2.5. In addition, we
show that MODIS AOD dataset provides indirect evidence of the
summer burning in the Southeast.

2. Data and methods

2.1. VISTAS fire emission inventory

A comprehensive emission inventory has been developed based
on the 1999 National Emission Inventory Version 2 (final)
(NEI99V2) (http://www.epa.gov/ttn/chief/net/1999inventory.
html), as part of the Visibility Improvement State and Tribal Asso-
ciation of the Southeast (VISTAS) program, a joint effort of 10 states
in the southeastern United States (Barnard and Sabo, 2003),
including Alabama, Florida, Georgia, Kentucky, Mississippi, North
Carolina, South Carolina, Tennessee, Virginia, and West Virginia.
Fire emissions in 2002 are developed using fire events data
collected from state and federal agencies. Five states (Alabama,
Florida, Georgia, Mississippi, and South Carolina) have the most
complete data with more extensive fire monitoring coverage and
data processing.

2.2. Satellite fire detection products by MODIS and GOES

We use fire detection products from the Moderate Resolution
Imaging Spectroradiometers (MODIS) onboard NASA's polar-orbit
Aqua and Terra satellites. With overpass time at ~1:30 pm and
10:30 am, respectively, Aqua and Terra together provide nearly
global coverage on a daily basis. Terra MODIS data are available
from Terra in the full year of 2002, while Aqua MODIS data are only
available for months after July 2002. The fire detection product
from MODIS is derived from thermal radiance observations, and
has a pixel size of 1 � 1 km2 (Giglio et al., 2003) with possibly
smaller actual burned areas. Daily fire counts from MODIS/Terra
Thermal Anomalies/Fire dataset (MOD14A1 V5) were ordered
through Land Processes Distributed Active Archive Center (LP
DAAC, https://lpdaac.usgs.gov/). Fig. 1 shows the spatial distribu-
tion of fire counts in summer (JJA) 2002.

Fire spot, which is a function of fire temperature and burned
area, is detected using an improved algorithm mainly based on the
observed brightness temperatures at 4 and 11 mm wavelengths
(Giglio et al., 2003). While fires with large burned areas or high
temperature can be well captured by the new fire detection algo-
rithm, the probability of fire detection drops rapidly for small fires
with low fire temperature (Giglio et al., 2003; Wang et al., 2007). In
our study, fire pixels with low probability were screened out before
analysis to ensure better data reliability. Zeng et al. (2008) found
that in the southeastern US, prescribed fires in March 2002 with
relative small sizes and low temperatures was under detected by
Terra MODIS, due to the following possible reasons. First, the un-
burned tree canopy could partially block the upwelling radiance
and reduce the chance of being detected by remote sensing. Sec-
ondly, prescribed fires with ignition time near or later than the
overpass time of Terra (10:30 am) could not be detected, because
fire temperature at the early burning stage may be lower than the
minimum brightness temperature needed for fire detection. Lastly,
cloud cover could interfere with fire remote sensing, although our
analyses of MODIS cloudiness do not find a statistically significant
relationship between fire counts and cloud coverage at state and
county levels.

The GOES satellites by National Oceanic and Atmospheric
Administration (NOAA) (Prins et al., 2001) provides continuous fire
detections in additional to the twice-per-day MODIS fire product
from Aqua and Terra. The GOES Automated Biomass Burning Al-
gorithm (ABBA) employs 2 similar bands, 3.9 and 10.7 mm, to locate
hot pixels. In 2002, fire activities weremonitored every half hour by
the GEOS-8 satellite over the southeastern US. It has a spatial res-
olution of 4 � 4 km2 in nadir. The half-hour detection interval
enables the recording of diurnal cycles of fire activities. The
archived GOES ABBA data were downloaded from the Fire Locating
and Modeling of Burning Emissions (FLAMBE) website (http://
www.nrlmry.navy.mil/flambe/index.html). Likewise to the MODIS
data analysis we discarded the fire pixels with lower probability to
ensure the data quality.

We find that GOES and MODIS fire counts have similar spatial
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patterns in the 10 southeastern states on a monthly basis during
2002e2006 (not shown), with spatial correlation coefficients
around 0.8. This indicates spatial and temporal consistency be-
tween the two satellites on a monthly basis, although the possi-
bility of missing small fires by both MODIS and GOES cannot be
ruled out. Such consistency lends confidence in using MODIS fire
counts for the following analysis of burning trends at state level.
2.3. CMAQ model setup

We use the EPA Models-3 Community Multiscale Air Quality
(CMAQ version 4.5) modeling system (Byun and Ching, 1999) with
the SPARC99 chemical mechanism (Carter, 2000). Emission in-
ventories compiled by the VISTAS project (Barnard and Sabo, 2003)
for 2002 are processed through the Sparse Matrix Operator Kernel
Emissions (SMOKE) Modeling System (http://www.smoke-model.
org/index.cfm). It includes updated anthropogenic emissions into
2002 developed from NEI 99. Biogenic emissions are calculated by
BEIS3 model. The meteorological fields in 2002 are assimilated by
Penn State/NCAR MM5 with the NCEP reanalysis data. The model
domain covers the contiguous United States and part of southern
Canada and northern Mexico with a horizontal grid of 36 km
(148 � 112), and has 19 vertical layers, of which 12 are below 1 km.
The model outputs for the southeastern United States are analyzed.
Two model runs are designed: (1) an annual run for 2002 is con-
ducted with the VISTAS base fire emission inventory; and (2) a
sensitivity run is conducted for summer 2002 (June, July, and
August) to test the sensitivity to summertime fire emissions.
2.4. Observational data of PM2.5, OC and EC

Measured concentrations of PM2.5, OC, and EC are obtained
from IMPROVE and SEARCH networks (Fig. 2). IMPROVE sites
mostly locate in clean rural area (Class I) to monitor the long-term
trends of aerosols degrading. Daily averaged samples are collected
every 3 days. More frequent data were collected at 8 SEARCH sites
Fig. 2. 8 SEARCH (squares) and 16 IMPROVE (triangles) sites in the 10 states in the
southeastern United States.
as four rural-urban/suburban pairs in Alabama, Florida, Georgia,
and Mississippi. We analyze OC and EC observations from 16
IMPROVE sites and 8 SEARCH sites in the 10 southeastern States.
Rural sites are not heavily impacted by anthropogenic emissions, so
that fire emissions might be more pronounced in the observations.
Additional surface ozone and aerosol data at other 55 sites from US
EPA Air Quality System (http://www.epa.gov/ttn/airs/airsaqs/) are
also used to evaluate the model performance over the Southeast.

3. Comparison of two fire products

3.1. VISTAS fire inventory vs. Terra MODIS fire counts

We compare the spatial consistency of fire activities recorded in
bottomeup reports and satellite-detected datasets on a monthly
basis (daily information is missing in the ground fire reports for
some southern states). Fig. 3 compares the monthly total burned
areas at state level during 2002 from VISTAS fire inventory and
TerraMODIS fire counts. Moderate correlation is found between the
2 fire products. Similar correlation coefficients (0.57 and 0.52) are
found for all fire types and for prescribed fire only, respectively,
indicating the dominance of prescribed fires in the Southeast.
However, we do not find a good correlation at county level in 2002.
This can be understood considering that (1) the temporal
randomness of fire activities makes them hard to be captured by
one satellite snapshot per day; (2) prescribed burning is generally
at its early stage at the overpass time (10:30 am LT) of Terra; and (3)
the upwelling thermal signal may not be always strong enough to
be sensed by MODIS instrument. Such deficiency underscores the
need for more observational information from another satellite
with a different overpass time. In the next, the fire detection
product from Aqua MODIS is introduced to obtain an improved
representation of prescribed burning.

3.2. Extrapolated Aqua and merged Aqua and Terra MODIS fire
products

The local equatorial crossing time for Aqua satellite is 1:30 pm
when more burnings occur, according to the fire diurnal pattern
from GOES. Prescribed fire becomes more visible to satellite
detection after several-hour development. Therefore, Aqua MODIS
is expected provide information complementary to Terra MODIS
data. Unfortunately, Aqua fire detection product is only available
after July 2002, which precludes the possibility of directly
combining information from the two satellites for the full year of
2002. Aqua MODIS (MODIS Flight Model) is a similar instrument as
Terra MODIS (MODIS ProtoFlight Model) with some improvement
in the thermal band (Xiong et al., 2003). Aqua scans the same area
after Terra with a 3-h interval. The same fire detection algorithm
(Giglio et al., 2003) has been employed to determine active fire for
both fire products. Therefore, one should expect a close correlation
between the two MODIS fire products.

We examine the correlation of fire counts from the two similar
MODIS instruments onboard Terra and Aqua in the years of
2003e2006 (Fig. 4), with the goal of establishing a relationship
between the two fire products, which can be further used to
extrapolate fire counts at 1:30 pm LT, the overpass time of Aqua, for
the first half of the year 2002 when Aqua data is not available.

Fig. 4 shows the monthly total fire counts in the Southeast from
Terra and Aqua from 2003 through 2006. As expected, the two
MODIS instruments detected similar regional fire patterns on a
monthly basis. In general, Aqua MODIS detects more fire spots than
Terra, which is consistent with the early afternoon peak in the
diurnal fire pattern from GOES. This may reflect the dynamics of
prescribed fires, as discussed earlier, with less developed fires at
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Fig. 3. Monthly total burned areas of all fires (left) and prescribed fire (right) by VISTAS inventory have been compared to fire counts by Terra MODIS (top) and merged MODIS
(bottom), respectively, in the 10 SE states. The correlation coefficients are shown.
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10:30 am than at 1:30 pm. In cold seasons, Aqua MODIS detects 2
times more fire counts than Terra MODIS. The two satellites
observed similar number of fire counts in warm season, with two
exceptions in June 2004 and July 2005, when Terra monitored very
few fire counts. The spring burning peaks in Terra and Aqua are
consistent with the VISTAS inventory in 2002. Fall peaks were only
shown in 2003 and 2005. The percentages of spatial coincidence
between the 2 satellite products, defined as their overlap on the
same grid in the same day, are mostly below 5%. This can be un-
derstood because active fires could spread from one grid to another
during the 3-h interval of the two satellite detections. The other
reason could be the late ignition time of prescribed fire in cold
season leads to less thermal emissions in the morning and there-
fore reduces the possibility of detection by Terra MODIS. It would
have less impact on the afternoon detection by Aqua MODIS.

The correlation between Aqua and Terra MODIS during
2003e2006 is used to estimate fire counts that would have been
observed by Aqua at 1:30 pm for January through July in 2002.
Specifically, we first calculated the 4-year mean monthly ratios of
Aqua and Terra MODIS fire counts for each state, and then extrap-
olated Aqua fire counts bymultiplying fire counts from Terra for the
months of January through July in 2002 with those Aqua-to-Terra
ratios for the same months of 2003e2006. Fig. 5 shows the
extrapolated monthly Aqua MODIS fire counts from January
through July 2002 and the observed Aqua MODIS fire counts in the
rest 5 months of 2002. In spring 2002, the extrapolated Aqua
MODIS fire counts based on the 4-year monthly and state mean
Aqua-to-Terra ratios shows a larger spring peak than Terra MODIS,
and become similar to Terra in the summer (April, June, and July). In
winter, Aqua MODIS detected more fire counts than Terra.

A new satellite fire dataset in 2002 is constructed by merging
Terra and Aqua (observed and extrapolated) MODIS detected fire
counts. Compared to Terra fire counts, the new merged MODIS fire
counts have a better correlation with the state-level monthly total
burned areas from the VISTAS fire inventory (Fig. 3 lower panel, the
correlation coefficients increase from 0.57 to 0.76 for all fire types
and 0.52 to 0.73 for prescribed fire only, respectively), indicating
that the twice-per-day satellite scans at different hours over the
same region capture the more fire activities than those from one
satellite alone. For the five states (AL, FL, GA, MS, and SC) with
detailed fire burn data, similar R improvement by the merged
dataset are found from 0.52 to 0.76 for all fire types and 0.46 to 0.72
for prescribed fire alone. A main reason for the improved correla-
tion in Fig. 3 is that in spring 2002, the addition of extrapolated
Aqua data in the early afternoon results in muchmore fire activities
in the merged MODIS data and better agreement with VISTAS. In
the next section, we analyze the seasonal pattern of fires in the
Southeast, by combining information from the two satellites Terra
and Aqua and the VISTAS bottomeup inventory.



Fig. 4. Monthly fire counts over the 10 SE states by Terra (blue dotted line with square) and Aqua (red solid line with triangle) MODIS instruments from 2003 to 2006. Note: The
colors refers to the online version only.

Fig. 5. Terra (blue solid line with square) and Aqua (green dotted line with triangle)
MODIS observed monthly fire counts over the Southeastern US in 2002. Predicted Aqua
fire counts (red dash line) are also shown. Note: The colors refers to the online version
only.
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3.3. Seasonal variations of fires in the southeastern US

Fig. 6 shows the monthly VISTAS burned area and merged
MODIS fire counts in the Southeast. Both data consistently suggest
Fig. 6. Comparison of VISTAS burned area (red solid line) and merged MODIS fire
counts (Terra þ predicted Aqua, blue dash line) in the SE United States. Note: The
colors refers to the online version only.
that the largest fire peak occur in spring (JanuaryeMarch). How-
ever, the secondary fire peak in August 2002 in the merged MODIS
fire dataset is not seen in VISTAS inventory. The majority of the
satellite observed summer burnings occurred in Georgia and Ala-
bama. Such an anomaly among different years, is not very un-
common; for example, increased fire counts were detected in
October in 2003 and 2005, but not in 2004 or 2006. The discrep-
ancy between MODIS and VISTAS may be due to missing burning
activities in the military bases by the bottomeup inventory. In
terms of MODIS fire detection, although the possibility of false
alarm can increase in summer (Giglio et al., 2003), it is more
common to have omission error rather than commission error
(Csiszar et al., 2006). Zeng and Wang (2011) found that biomass
burning instead of SOA production is more likely the cause of a
‘missing’ source of OC and EC (as indicated by higher OC/EC ratios)
in summer 2002 in the SE US. Accounting for the emissions from
these missing fire activities might mitigate the severe underesti-
mation of organic carbonaceous aerosols in the Southeast. In the
next section, in order to test this hypothesis, a new fire emission
inventory is developed based on the merged MODIS data. CMAQ
simulations are conducted to test the sensitivity of the abundance
of fire pollutants (e.g. EC and OC) to the change of fire emissions.
Ambient observations are used to evaluate the model performance.
4. Development and validation of a hybrid fire inventory

4.1. A new hybrid fire emission inventory

A new ‘hybrid’ fire emission inventory is developed by
combining the information from satellite and ground-based fire
products. These two types of fire data complement each other with
their own advantages and limitations. Satellite fire products pro-
vide continuously monitoring of large areas and the extensive
spatial coverage, while possibly missing some small fires; bot-
tomeup fire inventory has more detailed information of fires, but
may not include fires from some remote areas and military bases.
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The purpose of combining bottomeup and satellite fire products is
to account for those omitted fires by the bottomeup inventory as
observed from the satellites. The process of deriving the hybrid
emissions inventory for each state involves two steps.

First, we assume that the under-detection error in satellite fire
measurements does not vary seasonally (monthly), and use the
variability satellite observed monthly in state total fire counts to
represent the seasonal variations of state total fire emissions. The
regional total fire emissions in the 10 SE states in VISTAS 2002 in-
ventory are scaled to follow the trend of the merged satellite fire
counts (Eq. (1)) on a monthly and state-level basis. March 2002 has
the largest fire emission as shown in both bottomeup and satellite
data, and is set as the month with a ‘true’ emission-to-fire count
ratio. State fire emissions in other months of 2002 are scaled to
have a consistent emission-to fire count ratio in March 2002, such
that the monthly variation of state-level emissions matches that of
satellite observed fire counts (activities).

New Fire Emissionm ¼ VISTAS Fire EmissionMarch

� MODIS Fire Countsm
MODIS Fire CountsMarch

(1)

Scaling Factorm ¼ New Fire Emissionm
VISTAS Fire Emissionm

¼ MODIS Fire Countsm
MODIS Fire CountsMarch

� VISTAS Fire EmissionMarch

VISTAS Fire Emissionm
(2)

As computed using Eq. (2), a scaling factor is by definition 1 for
March 2002 and the fire emissions do not need to change, whereas
a scaling factor greater than 1 indicates extra fire emissions called
for by satellite fire counts but omitted by VISTAS. The scaling factors
(Eq. (2)) for June, July, and August 2002 are 7.837, 5.383, and 9.462,
indicating substantial increase of emissions in summer after ac-
counting for those omitted fire activities.

In the second step, regional totals of extra emissions as indicated
by satellite data are spatially distributed into those satellite fire
pixels following the spatial distribution of fuel loading across a
state, and aggregated into county totals for SMOKE model pro-
cessing. Fire emission associated with each satellite fire count is
computed following Eq. (3) such that the ratio of this pixel level
emission and the state-total emission equals the fraction of fuel
loading at each fire pixel in the total fuel loading over all the sat-
ellite fire pixels in each state on a monthly basis.

Fire Emissionpixel ¼ Extra Fire EmissionState

� Fuel Loadingpixel
Total Fuel loadingState

(3)

Fuel Characteristic Classification System (FCCS) (Sandberg et al.,
2001) provides the fuel loading information in this study. Eq. (3)
assumes the same emission-to-fuel loading ratio for different fire
types, i.e. wild fire or prescribed fire. In general, satellite fire remote
sensing cannot identify fire categories, such as agriculture burning,
land clearing, prescribed fire, and wild fire. Prescribed fire is the
dominant fire type in the Southeast (Zeng et al., 2008), and the
satellite observed fires are mostly located in rural area.
4.2. Validation of the hybrid fire emission inventory using air
quality modeling

The new inventory is processed by SMOKE emission model as
CMAQ model inputs. Model performance of the base CMAQ run
with VISTAS emission inventory for annual and summer (JJA) 2002
is examined using the EPA recommended statistic measures (EPA,
1999) for (Table 1). Ozone is simulated well with mean bias <10%
and mean error <15%. There is almost no difference between
annual and summer statistics for ozone simulations. EC, OM, and
PM2.5 are found to be under-predicted (Table 1), with larger
negative mean biases (�47%) in summer than annually (�20%). The
mean errors for aerosols are close in summer and whole year.
Overall, CMAQ simulations are well within EPA recommended
uncertainty range but with larger uncertainties for aerosol species
in summer.

Fig. 7 compares the seasonal variations of OC and EC concen-
trations in the southeastern 10 states. With the original VISTAS
emission inventory, the base model run under predicts OC and EC
concentrations in all four seasons. The largest under-prediction is in
summer, with a low bias of 73% for OC (0.63 vs 2.32 mg/m3) and 64%
for EC (0.13 vs. 0.36 mg/m3) (Table 2). The more severe underesti-
mate for OC than for EC might be due to underestimated sum-
mertime SOA formation, as discussed in many previous studies. In
other 3 non-summer seasons, the OC bias is around ~25%, while the
EC bias ranges from 45% in fall to 7% inwinter. Simulated OC and EC
do not follow the observed seasonal trend, mainly because they are
severely underestimated in summer.

Compared to the base run, the sensitivity run with the new
hybrid fire emissions showsmuch improved OC and EC simulations
in summer (Fig. 7). The model biases in summer for OC and EC
decrease to 25% (1.75 vs. 2.32 mg/m3) and 17% (0.30 vs. 0.36 mg/m3),
respectively. As a result, the seasonal trend of OC in the sensitivity
run matches the observed trend very well. Although including in-
formation from satellite observations helps to improve the simu-
lations of seasonal mean OC and EC concentrations, the standard
variations increase from 0.42 to 1.27 mg/m3 for OC and
0.10e0.20 mg/m3 for EC.We also examine themodel performance of
OC and EC 24 individual sites in the Southeast. Using the hybrid fire
emission inventory lowers biases at individual sites, with increased
slopes of data-model linear regression (from 0.5 to 0.6 for OC and
from 0.3 to 0.4 for EC).

The underestimation of OC in CMAQ has been reported in a
number of studies (e.g. Mebust et al., 2003; Morris et al., 2006;
Zhang et al., 2006), and can be caused by under-prediction of SOA
formation, inaccuracy of emission inventory, and errors in the
modeling of other processes, including boundary layer mixing, dry/
wet deposition, and advection. The negative bias of EC is more
direct indicative of errors in EC emissions, if assuming insignificant
contribution from model transport errors.

Overall, these results suggest that satellite fire counts are helpful
in capturing seasonal variations of fire emissions on a regional
basis, thereby improving the model simulations of the background
concentrations of carbonaceous aerosols in rural (Class I) areas.
Further understanding of aerosol spatial distribution at finer tem-
poral and spatial scales, can be facilitated by high quality satellite
data that help capture the random fire burning events, which are
not well documented in current fire inventory but essential for
quantifying the impact from fires on air quality.

5. Fire impact on MODIS fine AOD

Smoke from biomass burning contains large amount of organic
carbon and black carbon. It can change the column aerosol con-
centrations and the atmospheric optical property in a very short
time horizon. The increase of aerosol concentrations can be
potentially monitored by MODIS instrument as a measure of
ambient aerosol optical depth (AOD) (Kaufman et al., 2002; Chu
et al., 2002; Remer et al., 2005). We compare MODIS AOD before
and after fires to see if it can be a useful indicator of emissions from
small fire events in the SE US. It can be a challenge to disentangle



Table 1
Model performance of the simulations of EC, OM, PM2.5, and ozone (ppbv) for CMAQ base run in 2002 and summer 2002a.

Species Num. obs Obs_mean (mg m�3)b Sim_mean (mg m�3)b MB (mg m�3)b ME (mg m�3)b NMB (%) NME (%) MFB (%) MFE (%)

Annual EC 2694 0.46 0.34 �0.13 0.32 �27.3 69.3 �20.6 46.9
OM 2700 2.89 2.57 �0.32 2.13 �11.2 73.7 �14.7 48.9
PM2.5 3897 10.97 7.94 �3.03 5.90 �27.6 53.7 �20.5 40.4
1hr max O3

c 355,277 56.0 58.2 2.2 11.6 7.6 11.7 e e

8hr max O3 168,171 53.3 48.6 �4.7 10.4 �5.4 29.6 e e

Summer EC 738 0.44 0.23 �0.21 0.29 �47.8 65.9 �34.2 50.2
OM 742 3.4 1.79 �1.61 2.34 �47.4 68.7 �43.5 55.1
PM2.5 992 13.54 6.83 �6.71 7.65 �49.5 56.5 �39.1 45.4
1hr max O3

c 25,403 60.1 61.8 1.8 13.8 7.6 11.2 e e

8hr max O3 10,150 56.2 49.0 �7.2 12.3 �8.9 29.9 e e

a MB, ME, NMB, NME, MFB, and MFE are acronyms of mean bias, mean error, normalized mean bias, normalized mean gross error, mean fractional bias, and mean fractional
error, respectively.

b Ozone unit is ppbv.
c Observations with daily max O3 > 40 ppbv are considered.

Fig. 7. Seasonal mean OC and EC concentrations from the observation (black solid line with triangle) and two CMAQ simulations with standard fire emissions (blue dotted line with
diamond) and with MODIS fire emissions (red dash line with square). Note: The colors refers to the online version only.

Table 2
The observed and two model simulated monthly mean and median OC and EC
concentrations (Unit: mg/m3) at the 24 southeastern sites in summer 2002 (JJA).

Mean OC Median OC Mean EC Median EC

Observations 2.32 2.31 0.36 0.37
Base model 0.63 0.57 0.13 0.11
Model w. MODIS Fire 1.75 1.52 0.30 0.20
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the enhancement of AOD due to fires and that due to anthropogenic
emissions plumes from urban areas, except for some large fires
such as the Okefenokee Swamp fire in 2007, which had more than
100,000 acres of burned area (http://en.wikipedia.org/wiki/
Bugaboo_scrub_fire). MODIS fire pixels are generally in the forest
area with small anthropogenic impact, therefore, if observed, the
enhancement of aerosol optical thickness nearby should be mostly
due to fire emissions.

MODIS MOD04_L2 (http://modis-atmos.gsfc.nasa.gov/MOD04_
L2/index.html) product is employed in the analysis. It is a daily
product with a spatial resolution of 10 � 10 km2. MODIS AOD fine
component at 550 nm is chosen to represent the variations of
columnar aerosol concentrations. Fire locations are obtained from
MODIS fire counts. TheMODIS AOD pixels within 10 km radius from
the fire location are searched and the maximum AOD is used to
represent the aerosol abundance for that day. To track the AOD
changes due to fire burning, we chose 3-day period (before, fire,
and after) with continuous MODIS AOD observations and MODIS
fire detection in the 2nd day. Cloud pixels are excluded from the
satellite observations of fire and AOD (Chu et al., 2002).

A total of 1005 cases have been found to meet the criteria in the
10 SE states in summer 2002 (JJA). Fig. 8 shows that on average,
MODIS AOD increases by 27% from 0.35 on the day before fire to
0.45 on the day with fire. On the day after fire, only 13% increase is
obtained comparing to the day before fire. The 0.1 AOD
enhancement is larger than the AOD uncertainty over land of
±0.03 ± 0.05 (Remer et al., 2005). Since the fire detection is for
cloudless and smoke free areas only (Giglio et al., 2003), the AOD
enhancement would have been larger if including those excluded
small and cold fires at smoke pixels with an updated fire detection
algorithm (Wang et al., 2007).

6. Discussion and conclusions

In this work, we have studied the contribution of fire emissions
to ambient aerosols in summer 2002 in the Southeast, using sat-
ellite MODIS fire counts and air quality modeling. Satellite obser-
vations indicate more extensive burnings in the Southeast in
summer than suggested by the bottomeup fire inventory VISTAS,
possibly due to those uncounted fires in remote regions. We
developed a hybrid fire emission inventory with a newmethod that
combines information from the bottomeup inventory and satellite
fire detection by scaling the data of topedown fire count in the
other months with its ratio to the bottomeup burned area data in
March, the month of most prescribed burning in the Southeast in
2002. Such computed burned areas in summer are higher than the
bottomeup inventory in summer; the increase of fire emissions is
spatially allocated over satellite observed fire pixels based on the
spatial distribution of fuel loading. We show that the updated fire
emission inventory leads to notably improved CMAQ model per-
formance of OC, EC and PM2.5, in the Southeast on a regional basis,
with reduced model low bias in the summer and better agreement
with the observed seasonality. The satellite fire counts based fire
emissions are also consistent with satellite MODIS AOD at 550 nm,
which shows an average enhancement by about 0.1 (larger than
instrument uncertainty) is found on the days with satellite detected
fires compared to the day before fires. Our results suggest that
satellite can help account for emissions from some fires missed in
the bottomeup inventory.

http://en.wikipedia.org/wiki/Bugaboo_scrub_fire
http://en.wikipedia.org/wiki/Bugaboo_scrub_fire
http://modis-atmos.gsfc.nasa.gov/MOD04_L2/index.html
http://modis-atmos.gsfc.nasa.gov/MOD04_L2/index.html


Fig. 8. (Left) Averaged MODIS AOD (unitless) for the days before fire (Before), with fire (Fire), and after fire (After) over the SE US in summer (JJA) 2002. The day with fire is defined
for MODIS pixels on the day with MODIS fire detection. Standard deviations are shown for each case. (Right) Probability distributions of MODIS AOD for the days before fire (blue
solid line), with fire (red dotted line), and after fire (green dash line) over the SE US in summer (JJA) 2002. Note: The colors refers to the online version only.
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The results from this study is also consistent with our previous
study that used OC/EC ratio as an indicator of fine aerosol contri-
butions from the combination of a variety of sources such as
biomass burning and SOA production (Zeng and Wang, 2011).
Summertime peaks of OC/EC ratios have been observed over the
Southeast, and SOA and biomass burnings found to be two major
contributors, based on global GEOS-Chemmodel simulations using
a fire emission inventory based on MODIS and other satellite ob-
servations (Zeng and Wang, 2011). A main finding from Zeng and
Wang (2011) is that summertime fire emissions may be under-
estimated in the existing bottomeup fire inventories in the
Southeast.

This hybrid emission inventory has been shown to help improve
OC and EC simulations in the Southeast. Missing fire emissions in
bottomeup inventories can partially explain the underestimated
PM2.5 concentration in the Southeast. While our study shows that
satellite fire detection can help improve our understanding of PM
distribution on a regional basis, the ubiquitous and random nature
of fire emissions call for future efforts to further constrain fire
contributions to particulate pollution on finer spatial and temporal
scales.
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