Atmospheric Environment 180 (2018) 226233

Contents lists available at ScienceDirect ATMOSPHERIC

ENVIRONMENT

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Improve observation-based ground-level ozone spatial distribution by ()

Check for

compositing satellite and surface observations: A simulation experiment

Yuzhong Zhang®*!, Yuhang Wang?, James Crawford®, Ye Cheng?, Jianfeng Li?

@ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
P NASA Langley Research Center, Hampton, VA 23681, USA

ARTICLE INFO ABSTRACT

Keywords:

Surface ozone

Indirect satellite retrieval
Formaldehyde

Nitrogen dioxide
Geostationary satellite

Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the
surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an
indirect satellite retrieval framework to utilize the information from satellite-measured column densities of
tropospheric NO, and CH,O, which are sensitive to the lower troposphere, to derive surface ozone fields. The
method is applicable to upcoming geostationary satellites with high-quality NO, and CH,O measurements. To
prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over
the eastern US. The results show that a second order regression using both NO, and CH,0 column densities can
be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is
shown to be complementary to spatial interpolation of surface observations, especially in regions where the
surface sites are sparse. Combining column observations of NO, and CH,0 with surface site measurements leads
to an improved representation of surface ozone over simple kriging, increasing the R? value from 0.53 to 0.64 at
a surface site distance of 252 km. The improvements are even more significant with larger surface site distances.
The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool
to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

1. Introduction

Ozone (O3) in the boundary layer is mainly produced from the
photochemical reactions of nitrogen dioxide (NO) and volatile organic
compounds (VOC). Harmful to the health of human (Brunekreef and
Holgate, 2002) and vegetation (Reich and Amundson, 1985), ozone
near the surface has long been thought as an air pollution concern.
Information on surface ozone with a full spatial coverage are important
for evaluating the ozone exposure to human and vegetation (Avnery
et al., 2011; Zou et al., 2009). However, the current ground-based
monitoring networks do not provide adequate information to represent
the spatial distribution of surface ozone, especially in rural or remote
areas. Although there are monitoring networks designed to represent
the regional background (e.g., CASTNET), their sites are often too
sparse to capture the spatial variability in many regions.

Alternatively, satellite-based observations can provide good spatial
coverages. For example, satellite observed aerosol optical depth has
been applied to derive daily “gap-free” surface PM, 5 field (Lv et al.,
2016). Satellite can measure ozone in ultraviolet (UV) and thermal
infrared (TIR) bands. However, because of molecular scattering in the
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UV (Liu et al., 2005, 2010) and lack of thermal contrast in the TIR
(Beer, 2006), the satellite instruments are insensitive to ozone in the
lower troposphere, posing challenges to the direct retrieval of surface
ozone fields from satellite measurements. Multispectral techniques,
such as UV + TIR (Worden et al., 2007; Zoogman et al., 2014a) and UV
plus visible band (560-620 nm) (Liu et al., 2005; Zoogman et al.,
2014a), are proposed to improve the sensitivity to the lower tropo-
spheric ozone. Joint assimilation of ozone and carbon monoxide (CO) is
also proposed to improve surface ozone retrieval by exploiting the
ozone-CO model error correlations (Zoogman et al., 2014b). But these
techniques have not been extensively tested in operation.

Recent aircraft measurements during the Deriving Information on
Surface Conditions from Column and Vertically Resolved Observations
Relevant to Air Quality (DISCOVER-AQ) campaign show that surface
ozone concentration correlates well with tropospheric column densities
of nitrogen dioxide (NO,), a major component of NO, (NO + NO,), and
formaldehyde (CH,0), a major product from the oxidation of VOCs
including biogenic isoprene (Cheng et al., 2017; Schroeder et al., 2016)
(Also see Fig. 3). The O3-NO> and O3-CH,O relationships shown in the
measurements are broadly consistent with the current understanding of
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ozone photochemistry (i.e., boundary layer O3 is mainly produced from
reactions of NOy and VOCs at the presence of sunlight). In addition,
previous studies have used the ratios between satellite-observed CH,O
and NO, columns to diagnose the ozone production regime (Martin
et al., 2004; Duncan et al., 2010; Jin and Holloway, 2015), suggesting
that these column measurements contain information for surface Os.

Unlike ozone, which has relatively small vertical gradient in the
troposphere, NO, and CH,O are usually enhanced in the boundary layer
and this enhancement can easily be observed by satellites (e.g.,
Boersma et al., 2011; Zhu et al., 2016). Hence, it may be feasible to
derive surface ozone indirectly from satellite tropospheric NO, and
CH,0 column densities. This “indirect satellite retrieval” (ISR) ap-
proach requires good-quality NO, and CH,0 column density retrievals.
Partly because the return time of polar-orbiting satellites is at most once
per day, current daily retrievals of NO; and CH,O column densities
usually have a high noise level and are therefore not suitable for the ISR
method. However, the planned constellation of geostationary satellites,
TEMPO over North America (Chance et al., 2013), SENTINEL-4 over
Europe (Ingmann et al., 2012), and GEMS over East Asia (Bak et al.,
2013), should be able to greatly reduce the noise in the satellite column
density retrievals on a daily basis. For example, the baseline retrieval
products of TEMPO are designed to have precision of about 0.5 x 10'°
molecules cm ™2 for NO, and about 2 x 10*> molecules cm ™2 for CH,0O
(Chance et al., 2013). It is reasonable to expect that the indirect re-
trieval method using tropospheric NO, and CH;O measurements by
future geostationary satellites may provide useful information for the
distribution of surface ozone.

In this study, we will outline the framework of the ISR method. We
will also conduct a simulation experiment using the outputs from a 3-D
chemical transport model to study the factors that affect the perfor-
mance of the ISR method and evaluate whether this new technique may
add values to the existing surface ozone monitoring networks.

2. Methodology
2.1. Indirect satellite retrieval (ISR) framework

We examine the feasibility of “retrieving” surface ozone indirectly
from satellite tropospheric NO, and CH»O column observations, both of
which have good satellite measurement sensitivities in the boundary
layer. Fig. 1 illustrates the framework of the “indirect satellite retrieval”
(ISR) method in three steps: 1) construct a surface ozone predictor to
relate surface ozone mixing ratios with tropospheric NO, and CH,O
column densities; 2) predict the full spatial coverage surface ozone
mixing ratio field using satellite NO, and CH,O column data with the
predictor established in Step 1, and 3) correct the surface ozone mixing
ratio field predicted in Step 2 with ground-based observations. We use a
linear regression model as the surface ozone predictor in Step 1. The
linear model will be derived from surface site O3 observations and
corresponding satellite observations over the surface sites. More so-
phisticated methods, such as a formal assimilation system, can also be
used to replace the linear regression model used in this study. It is also
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noteworthy that Step 3 (i.e., post-correction with ground-based ob-
servations) is optional. However, we show in Section 3.2 that in-
corporating information from surface measurements reduces regional-
scale biases and greatly improves the performance of surface ozone
prediction.

2.2. Simulation experiment

To test whether future high-quality satellite NO, and CH,O ob-
servations can be useful for deriving surface ozone concentrations, we
setup a simulation experiment to conduct the ISR method outlined in
Section 2.1. Similar to an Observing System Simulation Experiment
(OSSE), which is a widely-used technique for assessing the added value
of a new satellite instrument to an existing observing system
(Timmermans et al., 2015), we regard the simulated fields from a 3-D
chemical transport model (CTM) (Section 2.3) as the “true” state of the
atmosphere and apply the ISR method to the synthetic fields. Unlike a
standard OSSE, which usually uses a second 3-D CTM as the “forward
model” for assimilation (Zoogman et al., 2011), we use the simple
statistical relationship to derive surface ozone from column observa-
tions. The focus here is to demonstrate the predictability of surface
ozone using column NO, and CH,O data rather than to construct a
formal assimilation system.

Conceptually, NO, and CH,O should contain more information
about surface ozone when ozone production from NOx and VOCs is
significant. The ISR method is expected to work during warm seasons
over regions with significant emissions of ozone precursors. Therefore,
the simulation experiment is conducted over the eastern US for July
2011. The procedure follows the ISR framework described in Section
2.1 and is described in details as follows:

1 Define hypothetical surface sites in the model domain. For simpli-
city, these hypothetical surface sites are always defined in the center
of a model grid and spaced regularly in both east-west and north-
south directions. The surface site distance (i.e., the distance between
two nearest surface sites), referred to as SSD hereafter, is varied
from 72km to 720 km to test the impact of the surface site density
on the performance (see Section 3.3).

2 Construct a statistical model to predict surface ozone. We use
pseudo-observations from the model at the predefined hypothetical
surface sites to establish statistical relationships between surface
ozone concentrations (daily maximum 8-h averages) and co-located
tropospheric NO, and CH»O column densities (daily values around
1:00 p.m. local time). All pseudo-observations during July 2011 are
lumped together to fit a regression model and the resulting re-
lationship is applied to the whole domain in Step 3. To ensure the
robustness of the linear regression model, the tropospheric NO,
column densities with a heavy-tailed distribution are first log-
transformed before applying to linear regression. To study the pre-
dictability of column densities, various combinations of predictors
are tested (Table 1). For example, in the statistical models named
“CH0” and “NO,” (Table 1), either CH,0 or log-transformed NO,

Surface site
O observations
Surface O,
Satellite NO,, CH,0 predictor
observations aver Step 1

surface sites

Satellite NO,, CH,0
observations

Bias-reduced
full spatial coverage
surface O,

Full spatial coverage

Step 3
surface Oy

Step 2

Fig. 1. Framework of the ISR method to derive surface ozone spatial distribution using satellite tropospheric NO, and CH,0 column observations and surface site ozone observations.
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Table 1
Statistical model for variations of the ISR method.

Name Statistical model

CH,O Y ~X,

NO, Y ~ X,

Linear Y~ Xi+X,

Full Y~ (X1+X2)’ + X1 +Xz

CH,O + SI Y ~ X5 Correct with simple kriging (Y)~1

NO, +SI Y ~ X3 Correct with simple kriging (Y)~1

Linear + SI Y ~ X;+Xy; Correct with simple kriging (Y)~1

Full + SI Y~ (X1-+-X2)2 + X1 +Xo; Correct with simple kriging (Y)~1

SI Simple kriging Y~1

columns are used as predictors for surface ozone, whereas in the
statistical model named “Linear”, both predictors, CH,O and log-
transformed NO, columns, are used. In the statistical model “Full”,
we further add second-order terms of CH5O or log-transformed NO ,
columns (including interactions between the two variables) to ac-
count for their non-linearity effects on surface ozone. Section 3.1
discusses the performance of varied statistical predictors. This step
can be thought as statistically training a forward model using the
historic surface and satellite observations.

3 Indirectly retrieve surface ozone mixing ratios. We apply the derived
statistical relationships to the whole domain to compute the surface
ozone fields (daily maximum 8-h averages) over eastern US based on
daily column observations of NO, and/or CH,O. Because of the
factors that cannot be resolved in a simple linear model, the errors in
these derived surface ozone fields often feature spatial patterns (See
Section 3.2). To reduce these errors, we spatially interpolate (simple
kriging) the correction term found at the hypothetical surface sites
(difference between surface ozone observations and ozone mixing
ratios derived from regression) and apply the correction over the
entire domain. This post-correction approach is similar to Lv et al.
(2016), in which the authors derived surface PM, s fields from sa-
tellite AOD and surface site PM, 5 observations. By spatially inter-
polating the correction at surface sites, we effectively incorporate
the information from the surface observations into the final results.
We hereafter denote the results using this technique with a postfix
“+8I” (e.g., Full + SI), which stands for spatial interpolation.

4 Evaluate the results. We evaluate the surface ozone mixing ratios
(daily maximum 8-h averages) computed from different variations
of the ISR method against the “true” values from model outputs with
two performance metrics, Pearson's correlation coefficient (r) and
root mean squared error (RMSE). Results over the hypothetical
surface sites are excluded in the evaluation. We also compute the
performance metrics for spatially interpolating surface ozone ob-
servations at hypothetical surface sites using simple kriging. These
cases are denoted as “SI”. Results in Section 3.2 show that column
observations of NO, and CH,0 have potential to add values to ex-
isting ground-based observations.
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In the simulation experiment described above, we use the model
simulated NO; and CH,0 column densities, which can be thought as
perfectly accurate satellite observations. In reality, satellite observa-
tions are subject to varied uncertainties. To assess the impact of satellite
observation uncertainties, we perform additional calculations with
random errors added to the CTM-simulated tropospheric NO, and CH,0O
column densities. The random errors are assigned to be normally dis-
tributed with zero mean and standard deviations of 0.5 x 10" mole-
cules cm™ 2 for NO5 and 2 x 10'® molecules ecm ™2 for CH,O0, consistent
with precision specification in the TEMPO baseline retrieval products
(Chance et al., 2013). Section 3.4 discusses the impact of satellite ob-
servation uncertainties on the performance of the ISR method.

2.3. Chemical transport model

We use the 3-D Regional chEmical trAnsport Model (REAM) for the
simulation experiment described in Section 2.2. The REAM has been
successfully applied to study the NOy-hydrocarbon-O3 chemistry (Choi
et al., 2008; Zhao et al., 2010; Zhang and Wang, 2016; Zhang et al.,
2017) and satellite emission inversions (Zhao and Wang, 2009; Gu
et al., 2014, 2016) over North America and East Asia. The model has a
horizontal resolution of 36 km and 30 vertical layers in the troposphere.
Meteorological fields are assimilated using the Weather Research and
Forecasting (WRF) model constrained by the NCEP Climate Forecast
System Version 2 (CFSv2) data (Saha et al., 2011). The anthropogenic
emissions are from the emission inventory of 2010 for the Task Force on
Hemispheric Transport of Air Pollution version two (HTAPv2). The
biogenic isoprene emissions are calculated using the Model of Emissions
of Gases and Aerosols from Nature (MEGAN v2.1) algorithm (Guenther
et al., 2012). The chemical mechanism is adopted from GEOS-Chem
v9.1 with updates on chemistry of aromatics (Liu et al., 2012) and
isoprene (Paulot et al., 2009; Crounse et al., 2011). Transport schemes
(advection, convection, and turbulent mixing) are implemented fol-
lowing previous work (Grell, 1993; Walcek, 2000; Hong et al., 2006).

The simulation experiment in this study uses REAM outputs for July
2011. The results are evaluated against DISCOVER-AQ aircraft mea-
surements during the same period of time over the Washington D.C.-
Baltimore areas. Fig. 2 shows the comparison of the vertical profiles
between the aircraft observations and REAM simulation. The REAM-
simulated vertical profiles of NO,, CH,O, and O3 are in good agreement
with aircraft observations. Notably, the large vertical gradients of NOy
in the boundary layer observed during the DISCOVER-AQ 2011 cam-
paign (Zhang et al., 2016) are well simulated by REAM. In addition, the
REAM simulation is also able to reproduce the relationship between
near-surface ozone (~300m) and column-integrated CH,O and NO,
(Fig. 3). Schroeder et al. (2016) and Cheng et al. (2017) have reported
the correlation between the column densities of O3 and CH,0 during
DISCOVER-AQ 2011. Our results show that near-surface Os is also
correlated with CH,O column (Fig. 3a and b) and this relationship may
be exploited to derive surface O3 indirectly from space. More evaluation
of REAM simulations with DISCOVER-AQ data can be found in Cheng
et al. (2017). In summary, the REAM model shows a good capacity to
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Fig. 2. Observed (black) and simulated (red) vertical profiles for NO,, CH,0O and O3 during the DISCOVER-AQ 2011 campaign. Standard deviations of the data are shown as horizontal
lines for observations and shadings for model simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. Observed (a, ¢) and simulated (b, d) relationships between near-surface ozone and
column densities of CH,O (a, b) and NO,, (¢, d) during DISCOVER-Q 2011. Each symbol
represents a daily average at a certain surface site. Data measured between 12:00
p-m.—4:00 p.m. local time are used. Near-surface ozone is measured at the lowest altitude
(~300m) of each vertical profile sampling by the aircraft. Note that NO, data are log-
transformed.

reproduce the observed variability in O3, NO, and CH,O and is an
appropriate tool for the simulation experiment.

It is noteworthy that the simulation experiment approach here im-
plicitly assumes that the statistical relationship derived from the REAM
model has explanatory power similar to that in the real atmosphere.
Although this assumption is supported by the evaluation with DISCO-
VER-AQ 2011 observations (Figs. 2 and 3), it is limited in time and
location. More observations (possibly from future geostationary sa-
tellites) are needed to better characterize the spatial and temporal
variation in the relationship between surface ozone and column NO,
and CH,O.

3. Results and discussion
3.1. ISR statistical predictors

In the simulation experiment, we tested various statistical models to
describe the relationship between column observations and surface
ozone. As introduced in Section 2.2, we calculate the parameters of the
statistical models using the surface ozone and column data at hy-
pothetical surface sites in the simulation experiment. In this section, we
will present results with a SSD of 252 km (i.e., the hypothetical surface
sites are assigned every 7 grids in both east-west and north-south di-
rections). The impact of SSD on performance of the ISR method will be
discussed in Section 3.3.

The results from the simulation experiment show that tropospheric
NO, and CH,O columns are informative for deriving surface ozone
(Fig. 4). It is interesting to note that although both the observations and
the model show a strong correlation (R? = 0.43) between surface Os
and CH,O columns during DISCOVER-AQ 2011 (Fig. 3) over the Wa-
shington-Baltimore area, our simulation experiment indicates a much
smaller overall explanatory power (R®=0.15)ina larger domain (i.e.,
the eastern US), which is mainly caused by the spatially varying
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relationship between surface ozone and CH5O columns. The relation-
ship tends to be stronger in isoprene-abundant regions and weaker in
anthropogenic emission dominated regions (Cheng et al., In prepara-
tion). In addition, the explanatory power of NO, is only moderate over
both the DISCOVER-AQ region and the whole domain, although ozone
production is thought to be NOy-limited over much of the eastern US
(Duncan et al., 2010; Martin et al., 2004). This is mainly due to the fact
that a simple statistical relationship between co-located surface ozone
and NO; columns cannot reflect the ozone production upwind. The
additional complication by lightning NO, aloft (Zhao et al., 2009) may
further deteriorate the explanatory power of NO, columns.

Including both CH,O and NO, column densities as the ISR pre-
dictors (Linear) improves the performance over either the “CH,0” or
“NO,” cases (Fig. 4), indicating that CH,0 and NO, column densities
contain independent pieces of information for surface ozone. For ex-
ample, the NO, column densities, highly varying on a regional scale,
may be useful for characterizing the urban to rural gradient. On the
other hand, the CH,O column densities are featured with less regional
gradient but are informative about day-to-day variations in photo-
chemistry, especially over the isoprene-abundant regions. The inclusion
of second order terms (Full), which can partly account for the non-
linear response of ozone production to the NO, and VOCs amounts,
further improves the performance (Fig. 4).

In this study, we only show simulation experiment results using
column measurements made at 1:00 p.m. local time. Additional ana-
lyses show that we are able to achieve similar performances if we use
columns measured in other afternoon hours (1:00 p.m.-4:00 p.m.) (Fig.
S1 in the supplement). Furthermore, these afternoon columns may be
averaged to reduce the impact of random measurement errors (See
discussions in Section 3.4).

3.2. Added value to surface observations

The simulation experiment shows that CH,O and/or NO, column
densities (Section 3.1) have some capability to predict surface ozone
(R%0.15-0.36; RMSE:10.9-12.7 ppbv). However, none of the ISR
methods using only column predictors outperforms “SI” (R%: 0.53;
RMSE: 9.3 ppbv), in which the surface observations are interpolated
spatially. By incorporating the information from surface observations
with the spatially interpolated correction field, the post-correction
procedure (the “+SI” cases) significantly improves the overall perfor-
mance (Fig. 4). For example, “Full + SI” (R% 0.64; RMSE: 8.2 ppbv)
outperforms both “Full” (R*: 0.36; RMSE: 10.9 ppbv) and “SI” (R* 0.53;
RMSE: 9.3 ppbv) at an SSD of 252 km. The spatial distributions of the R?
and RMSE at the SSD of 252 km (Fig. 5) show that the performance of SI
generally decreases away from the hypothetical surface sites (perfect
performance shown as red dots in the R? plot and blue dots in the RMSE
plot). By utilizing the information of tropospheric column observations
of NO, and CH,O, “Full + SI” significantly improves the prediction
performance at locations away from surface sites. The increase in R?
and decrease in RMSE from “SI” to “Full + SI” demonstrate that the ISR
method we propose can add values to the surface observation network
to derive gap-free surface ozone fields.

Fig. 6 shows the added value (increase in R? and decrease in RMSE)
of column observations as a function of SSD. It shows that all the ISR
predictors discussed in Section 3.1 can improve the performance over
the SI case, which only utilizes surface observations. Consistent with
Section 3.1, the largest improvement over the SI case is found in the
“Full + SI” case, followed by “Linear + SI”, “NO»+SI”, and
“CH,0 + SI” cases. Fig. 6 also shows that the added values by the ISR
predictors generally increase with the SSD, mainly because the per-
formance of the “SI” method decreases rapidly with increasing SSDs
(i.e., sparser surface sites), indicating that the ISR method can be an
effective tool to derive surface O3 mixing ratios where surface sites are
sparse. Section 3.3 gives a detailed discussion on the impact of SSD.

The comparison between the “truth” and results from the ISR
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Fig. 4. Prediction performance (R? and RMSE) of different statistical models at an SSD of 252km.

methods for July 1 and 16 (Fig. 7) provides insights in understanding
the added values of the ISR methods. In comparison with the “truth”,
the “Full” method (without post-correction with surface observations)
captures the local variability (i.e., the contrast between hot spots and
surroundings) quite well but shows systematic biases on regional scales
(e.g., the regional overestimation in the South on July 16). The is due to
the fact that the ISR statistical predictors are applied in the whole do-
main for the whole month, and therefore are unable to account for the
day-to-day and region-to-region variability in the O3NO»-CH,O re-
lationship. On the other hand, the “SI” method captures the regional
mean quite well, but misses detailed features in spatial distribution,
especially at locations distant from surface sites. The “Full + SI”

method possesses the merits of both “SI” and “Full” methods and gen-
erates a bias-reduced gap-free surface Oj field. Fig. 7 illustrates the
impressive performance by the “Full + SI” method in capturing the
spatial distribution of surface ozone on July 1 (R%= 0.80;
RMSE = 5.6 ppbv) and July 16 (R® = 0.59; RMSE = 7.8 ppbv).

3.3. Impact of surface site distances

This section examines the impact of SSD on the ISR method. As
described in Section 2.1, we use data at all the hypothetical surface sites
to derive the domain-wide relationship between surface ozone and
tropospheric column densities of CH>O and NO,. Additional surface

Added value

0.75

0.50

0.25

RMSE

25

Fig. 5. Spatial distributions of the prediction performance and the added values by the ISR method at an SSD of 252 km a and b plot the R? for “Full + SI” and “SI”. c plots the increase in
R? from “SI” to “Full + SI”. d and e plot the RMSE for “Full + SI” and “SI”, and f plots the reduction in RMSE from “SI” to “Full + SI”.
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sites add only marginal information to the regression model. The spatial
and temporal variability of the retrieved surface ozone from the ISR
method is largely determined by the variability in the column densities
of CH,O and NO,. Therefore, the performance of the ISR method
(without post-correction with surface observations) is insensitive to the
proximity of surface sites. As shown in Fig. 8, the overall R> and RMSE
for the “Full” method remain at ~0.3 and ~ 11 ppbv, respectively, in a
large range of SSDs (72-720 km). On the other hand, the variability of
surface O3 in the “SI” method relies on ozone observations at nearby
surface sites. Therefore, the results from the “SI” method is highly de-
pendent on the proximity of surface sites. Fig. 8 shows that the per-
formance of the SI method improves steadily as SSD decreases from
600km to 72 km.

By post-correcting the ISR method with surface observations, the
“Full + SI” method includes the complementary information from ac-
curate surface measurements and gap-free column measurements.
Therefore, “Full + SI” is able to outperform both “Full” and “SI” at all
SSDs (Fig. 8). It is noteworthy that the information from column
measurements can still increase the overall R> by ~0.1 and decrease
the overall RMSE by ~1 ppbv at an SSD of 180 km, demonstrating that
tropospheric column observations of CH,O and NO, add values to
surface observations even when the surface sites are relatively dense.

3.4. Impact of column measurement uncertainties

The simulation experiment in the above sections uses the model-
simulated tropospheric columns densities of CH,O and NO, for the
indirect retrievals of surface ozone, which is analogous to using accu-
rate satellite observations with no measurement (and retrieval) errors.
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Fig. 8. Performance of the “Full + SI”, “Full”, “SI” methods as a function of SSD.

This assumption will certainly be unrealistic in operation. To assess the
impact of measurement errors on the ISR method, we apply random
Gaussian errors to the simulated CH,O and NO,, tropospheric columns
and use the perturbed column densities to conduct the ISR method. The
standard deviations of the random errors are 2 x 10'® and 0.5 x 10'®
molecules-cm ~2 for CH,0 and NO, tropospheric columns, respectively,
based on the designed precisions for a TEMPO single retrieval (Chance
et al., 2013). As expected, the superimposed noises degrade the per-
formance of both “Full” and “Full + SI” methods (Fig. 9), but the
“Full + SI” method is still able to provide added values to surface
observations at an SSD of 252 km (Increase in R% 0.05; Decrease in
RMSE: 0.5 ppbv). These results show that the ISR method can still be
useful if the measurement and retrieval errors for CH,O and NO, tro-
pospheric columns are moderate. It should be noted that the standard
deviation we assigned is based on designed precisions for a single re-
trieval. These random errors can be significantly reduced if we derive
daily column measurements by averaging multiple daytime retrievals
within the same day, which will be readily available from geostationary
satellites. Fig. S1 in the supplement suggests that afternoon columns are
all quite informative to surface ozone. Based on that, we conduct an
additional test using averages of 5 afternoon columns (one for each
hour from 12:00 p.m. to 4:00 p.m.). With reduced random errors, this
test show performance metrics (R%: 0.62; RMSE: 8.5 ppbv) comparable
to those of using accurate 1:00 p.m. column measurements. This result
indicates that the temporal variation within the afternoon columns
induces little complication to the method.

4. Summary

Moderate correlations between near-surface ozone mixing ratios and
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Fig. 7. Ground-level ozone prediction using the “Full”, “SI”, and “Full + SI” methods at an SSD of 252 km for July 1 and July 16 of 2011.
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tropospheric column densities of CH,O and NO, have been found in recent
aircraft campaigns, suggesting that satellite measurements of these columns
may provide valuable information to indirectly retrieve surface ozone. In
this study, we conducted a simulation experiment to demonstrate the po-
tential of using satellite column measurements of NO, and CH,O to derive
surface ozone fields, using REAM model outputs as the “true” atmosphere.
The simulation experiment shows that the tropospheric NO, and CH,O
column densities can be effective predictors for surface ozone, but using
column densities alone cannot outperform spatial interpolation of surface
observations if surface sites are dense enough (< 400km). Compositing
column and surface observations (correct the surface ozone prediction by
column densities with spatially interpolating biases found at surface sites)
leads to the best performance in deriving full spatial coverage of surface
ozone fields, mainly because NO, and CH50O column densities can provide
information on the fine-scale spatial pattern, which is unavailable in sparse
surface ozone observations. We also examined the impact of uncertainties of
column measurements on the performance. We found that the uncertainties
degrade the quality of indirect retrievals. For example, the R? value using
the “Full + SI” method decreases by ~0.05 with specified measurement
errors, but still outperform the “SI” method by ~ 0.05 at an SSD of 252 km,
suggesting that column measurements can still be useful to supplement
surface observations when satellite measurement uncertainties are mod-
erate and surface sites are sparse. Furthermore, we show that it is also viable
to reduce the impact of random measurement errors by averaging multiple
afternoon retrievals, which will only be available from geostationary sa-
tellites.

The goal of this study is to demonstrate the concept of ISR and
provide the basis for designing operational assimilation systems for
exploitation of these data. Because of the setup of our simulation ex-
periment, we do not characterize complications such as cloud con-
tamination or surface site representativeness, which are factors to be
considered in an operational system. Furthermore, in the current study,
we use statistical relationships between surface ozone and co-located
tropospheric NO, and/or CH,O column densities and apply the re-
lationships over the whole domain. This simple statistical model cannot
fully account for the complex physical and chemical processes that link
surface ozone with column NO, and CH,O. The approach may be fur-
ther improved in the future by introducing more sophisticated statis-
tical modeling, or, alternatively, using a chemical transport model as
the forward model to better exploit the information content in high-
quality column measurements of tropospheric NO, and CH 0.
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