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Underestimation of particulate dry nitrogen 
deposition in China
 

Qianru Zhang    1,2,3, Yuhang Wang    3  , Maodian Liu    1,4  , Young-Hee Ryu    5, 
Mingxu Liu    6, Huoqing Li    7, Si-Yi Wei    2,8,9, Junfeng Liu1, Shu Tao    1 & 
Xuejun Wang    1,10 

Nitrogen is indispensable for global food production and ecosystem carbon 
sequestration, but excess nitrogen leads to water eutrophication, soil 
acidification and air pollution. Atmospheric nitrogen deposition is a key 
yet uncertain component of the biogeochemical cycle. Currently, global 
networks monitoring particulate nitrogen dry deposition rely mainly on 
measured concentrations and modelled dry deposition velocities, which 
remain poorly constrained. Here we develop a spatially explicit dataset by 
integrating observation-constrained size distribution and dry deposition 
mechanisms to re-evaluate atmospheric nitrogen deposition across 
China. We reveal that atmospheric chemistry models underestimate the 
particle size of fine-mode nitrogen-containing aerosols in China by more 
than twofold. Additionally, dry particle deposition velocity estimates 
with different mechanisms diverge by up to two orders of magnitude. 
Our corrections indicate that atmospheric chemistry models and China’s 
observation network underestimate particulate nitrogen dry deposition 
by 2–5 times. Furthermore, most Earth system models underestimate 
particulate dry deposition of ammonium, a major nitrogen species, by 
31%–98%. By integrating these corrections into the Community Land Model, 
we demonstrate that the effect of nitrogen deposition on China’s terrestrial 
net ecosystem productivity may have been underestimated by 9%–13%. 
As China contributes nearly 20% of global nitrogen deposition, its impact 
on terrestrial carbon sinks and ecosystem health could be greater than 
previously recognized.

Nitrogen, a fundamental element of living organisms, plays a vital role 
in Earth’s biogeochemistry1. Imbalances in the global nitrogen cycle 
can negatively affect ecosystem health2. Reactive nitrogen (Nr) species 
in the atmosphere, including inorganic oxidized and reduced forms 
and organic compounds, are important for their biological, photo-
chemical and radiative activities3. The global atmospheric Nr reservoir 
comprises both particulate (for example, NO3

−, NH4
+) and gaseous 

species (for example, NO2, NH3, HNO3)3. These primary pollutants or 
secondary atmospheric products contribute to secondary pollutant 
formation, impacting air quality and public health4. Furthermore, 

atmospheric Nr deposition, a key component of global Nr cycling, 
has tripled since industrialization5, affecting ecosystem health4,6, such 
as reduced biodiversity7, soil acidification8, water eutrophication9 and 
shifts in biogeochemical cycles, particularly carbon10,11. By alleviating 
nitrogen limitation10, atmospheric Nr deposition stimulates photo-
synthesis and adds up to 0.3 PgC yr−1 to global land sinks12,13, helping 
lower atmospheric CO2

11.
Atmospheric Nr deposition is a major source of uncertainty in 

understanding the global nitrogen cycle14–16. The deposition primarily 
occurs through wet and dry processes. Whereas wet Nr deposition can 
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levels are high. As a global hotspot for atmospheric Nr deposition21, 
China’s terrestrial Nr deposition rates are estimated to be ~7 times 
higher than the global average22. Observations show that surface air 
particles in China primarily exhibit an accumulation mode with a modal 
size of 0.6–1.4 μm (refs. 23–25) (specifically referring to inorganic 
nitrogen-containing aerosols), which is approximately a factor of two 
larger than the modal size observed in North America26–29. However, 
particle size distributions in process-based models are mostly based on 
observations from North America and surrounding marine areas26,30. 
Because larger particles tend to have higher dry deposition velocities, 
current models probably underestimate particulate Nr deposition 
in China.

Furthermore, recent research has highlighted uncertainties in 
the particle dry deposition mechanisms commonly used in models16,31. 
Emerson et al. introduced an observation-constrained deposition 
mechanism that revealed previous parameterizations overestimated 
dry deposition for fine-mode particles but underestimated it for 

be extrapolated from in situ measurements, estimating dry deposition 
at regional to global scales is challenging14. This estimation typically 
involves combining in situ observations or satellite-derived ambient 
Nr concentrations with modelled deposition velocities for particulate 
and gaseous Nr species using process-based models such as Chemical 
Transport Models (CTMs) and Earth System Models (ESMs) or directly 
obtaining it from these models’ simulations14,16,17. Key monitoring net-
works such as the Canadian Air and Precipitation Network, US Clean Air 
Status and Trends Network, the NitroEurope network, Acid Deposition 
Monitoring Network in East Asia (EANET) and China’s Nationwide Nitro-
gen Deposition Monitoring Network (NNDMN) utilize this inferential 
approach for estimating dry deposition14,18–20. The accuracy of these 
networks relies heavily on the simulated dry deposition velocity, which 
is strongly influenced by particle size distributions and the parameteri-
zation of size-resolved dry deposition.

However, large uncertainties remain in simulating particle sizes 
within atmospheric models, particularly in China, where pollution 

0.38 0.69

0

30

60

90

0

30

60

90

0

30

60

90

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

Diameter (µm)

dC
/d

lo
g(

D
p)

 (µ
g 

m
–3

) d(C
/C

o)/dlog(D
p)

Data type
Model unifying
Observation
Observation unifying

10–3

10–2

10–1

100

101

10–3

10–2

10–1

100

101

10–3

10–2

10–2 10–210–2

10–1

10–1 10–1 10–1

100

100 100 100

101

101 101

Diameter (µm)

D
ep

os
iti

on
 v

el
oc

ity
 (c

m
 s

–1
)

PE1992
BS1995
Z2001
E2020

a b

Mechanism

0.44 0.92

0.27 0.60

Heavily polluted days

Lightly polluted days

Barren or sparsely vegetated Water

Urban Crop

ForestNormal days Grass

Fig. 1 | Key factors affecting particulate nitrogen dry deposition. a, Model 
default and observed particle size distributions of NO3

−, NH4
+ and SO4

2− aerosols 
under three air pollution conditions in China. Green lines are simulated by the 
default model, grey lines are the observation data in spring, summer, autumn 
and winter in two urban sites in China, and pink lines are the result of unifying 
all observed data. To align with the observations employed, the green lines were 
averaged from simulations conducted for the spring (April), summer ( July), 
autumn (October) and winter ( January) seasons within the grid cells where the 
Beijing and Tianjin stations are located. The modeled (green) and observed 
(grey) distributions use the left y axis, where dC/dlog(Dp) indicates the aerosol 
mass concentration per logarithmic particle diameter interval. The pink lines, 

based on observational data, use the right y axis, where d(C/Co)/dlog(Dp) 
denotes the normalized aerosol mass concentration per logarithmic particle 
diameter interval. The black dashed lines and the numbers marked in the figure 
are the particle sizes corresponding to the peaks of the particle size distribution.  
b, Variation of particle dry deposition velocity with particle diameter for 
different land-use cover types calculated by four schemes in the atmospheric 
chemistry model in China. The values were averaged from the spring (April), 
summer ( July), autumn (October) and winter ( January) seasons. Four different 
colours represent four different particle dry deposition mechanisms. The 
land-use types are defined in Supplementary Table 4 and Supplementary Fig. 4.
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coarse-mode particles31. However, this new mechanism has not been 
applied to observation-constrained particle size distributions in pol-
luted regions such as China, where particle sizes tend to larger32,33. 
Consequently, Nr deposition in China remains poorly constrained, 
introducing substantial uncertainties in our understanding of the 
nitrogen cycle. These uncertainties hinder our ability to accurately 
predict the impacts of Nr pollution and to develop effective regulatory 
targets for Nr pollution control.

We hypothesize that the poorly constrained particle size distribu-
tions of nitrogen-containing aerosols and the mechanisms of particle 
dry deposition greatly impact the accuracy of Nr deposition quanti-
fication in China. Addressing this issue is urgently needed, given that 
ambient air pollution in China contributes to over 1 million premature 
deaths annually34, and Nr deposition influences the composition and 
lifetime of aerosols, affecting air quality and human health4,35,36. Fur-
thermore, China’s terrestrial ecosystems, representing approximately 
5%–10% of annual terrestrial carbon sinks worldwide37,38, are closely 
related to Nr deposition.

In this study, we leveraged the growing availability of observed par-
ticle size distribution data in China, combined with four commonly used 
particle dry deposition mechanisms (Extended Data Table 1), to exam-
ine their spatio-temporal effects on Nr deposition using the Weather 

Research and Forecasting Model coupled to Chemistry (WRF-Chem), 
a widely used atmospheric model. By integrating observed aerosol 
particle size constraints and identifying the deposition mechanism 
that best reflects China’s pollution dynamics, we developed a spatially 
detailed dataset to reassess atmospheric Nr deposition across the 
country and tested its robustness against observations. Furthermore, 
we highlight the implications of corrected Nr deposition estimates for 
understanding terrestrial carbon sequestration. Our findings provide 
valuable insights into the continental-scale nitrogen cycle and improve 
the predictions of air pollution and climate change impacts.

Importance of particle size and dry deposition 
mechanisms
Our analysis reveals that standard models substantially underesti-
mate the particle size of inorganic Nr particles across China compared 
to observations. Specifically, in the models, the simulated peaks of 
the particle size distribution are consistently lower than the observa-
tions in Beijing and Tianjin by factors of two to three (Fig. 1a). These 
cities were chosen for comparison due to their observations span-
ning a range of pollution conditions, covering normal, lightly polluted 
and heavily polluted days across all seasons. We also extended this 
comparison to include observations from eight other studies across 
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Fig. 2 | Particulate nitrogen dry deposition flux in China. a, Comparison of 
the atmospheric particulate nitrogen dry deposition in China under eight 
different model experiments in 2015. b, Comparison of observation-constrained 
dry deposition of particulate nitrogen in this study with that obtained from 
different ESMs and WRF-Chem and GEOS-Chem default models. Because ESM 
outputs lack data on particulate NO3

− dry deposition, only comparisons of 
particulate NH4

+ dry deposition are presented here. c, Comparison of particulate 
nitrogen deposition at nitrogen deposition monitoring sites in 2015, based 
on observation-constrained dry deposition velocities from this study and 

concentrations from published literature18, with the original deposition data 
from the same study18. d, The statistical results for comparison of simulated and 
observed NO3

− and NH4
+ concentration values under eight different experiments, 

along with the statistical values from ESMs. NMB stands for normalized mean 
bias, and FAC2 represents the fraction of simulations within a factor of two. 
FAC2 is calculated as the proportion of data points where the ratio of simulated 
to observed values falls within the range of 0.5 to 2. The observed data were 
obtained from the nationwide nitrogen deposition monitoring network in China 
and published literature (Supplementary Fig. 5).
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China. Whereas these datasets are less comprehensive than those 
from Beijing and Tianjin (Supplementary Table 1), they consistently 
indicate a systematic underestimation of the sizes of Nr particles by 
the model (Extended Data Fig. 1). Given the limited understanding of 
the mechanisms controlling aerosol particle size39, we employed an 
observation-constrained approach (Methods: ‘Particle size distribu-
tion’) in subsequent analyses to more accurately assess the impact of 
particle size on Nr deposition.

We observe substantial discrepancies in particle deposition veloci-
ties across different dry deposition mechanisms. We ran eight experi-
ments to characterize the uncertainty in simulating particulate dry 
deposition: four with observation-based particle size distributions  
(Osize series) and four with default particle sizes (Msize series). These 
experiments focused on NO3

− and NH4
+, key Nr components in atmos-

pheric particles40. Each set paired one of four resistance-based 
schemes, that is, ‘PE1992’41, ‘BS1995’42, ‘Z2001’43 and the newest 
observation-driven ‘E2020’31 (Methods: ‘Aerosol dry deposition 
mechanisms’). PE1992, once used in early WRF-Chem, is now rarely 
applied; BS1995 is widely used in the current version, whereas Z2001 
is common in models such as GEOS-Chem, CAMx and many ESMs. 
E2020 is the most recent and observation-constrained mechanism 
but remains underutilized.

We find that the discrepancies among these mechanisms are evi-
dent in two key aspects: (1) for different surface types, each mecha-
nism’s deposition velocities exhibit distinct ‘U’-shaped curves, with the 
lowest point of each curve corresponding to noticeably different diam-
eters (Fig. 1b). (2) In the accumulation mode of particles (0.05–2 μm, 
where particles are concentrated), the deposition velocities calculated 
by different mechanisms show considerable variations (Fig. 1b). A 
detailed comparison of these four mechanisms is presented in Sup-
plementary Text 1. In the following sections, we further analyse the 
performance of these mechanisms and find that E2020 most accurately 
represents atmospheric Nr deposition and nitrate pollution in China.

Underestimation of particulate dry nitrogen 
deposition across China
Our findings highlight that most current models greatly underestimate 
particulate Nr dry deposition across China. Among eight experiments, 
annual deposition spans 0.60–3.1 TgN yr−1 (Fig. 2a), with up to fourfold 
discrepancies between different particle dry deposition mechanisms. 
Switching from model-based to observation-constrained particle size 
distributions caused further variations within the same mechanism 
(−21% to +31%). These divergences reflect the differences in the particle 
diameters at which each scheme’s characteristic ‘U-shaped’ velocity 
curves reach their minimum (Fig. 1 and Supplementary Text 2). Further-
more, the observation-constrained experiment with the newest E2020 
parameterization (Osize_E2020) gives a deposition flux of 2.9 TgN yr−1 
(Fig. 2a), whereas the standard WRF-Chem setup (Msize_BS1995) yields 
only 0.60 TgN yr−1. A GEOS-Chem value of 1.5 TgN yr−1 (ref. 44), mirrored 
by Msize_Z2001 (1.5 TgN yr−1; Fig. 2a), falls midway. Thus, conventional 
CTMs underestimated China’s dry deposition of particulate Nr by a  
factor of 2–5, with the largest shortfall in Nr emissions-intensive eastern 
China (Extended Data Fig. 2).

Although total particulate Nr dry deposition fluxes from PE1992 
and E2020 are similar for China (Fig. 2a), their spatial distributions show 
substantial differences (Extended Data Fig. 2). This discrepancy stems 
primarily from the influence of surface physical characteristics on 
particulate dry deposition velocities for different land-use types31,45,46. 
Whereas PE1992 is based on spruce forest observations only, which 
were extrapolated to other land types, E2020 explicitly accounts for the 
dependence of particulate dry deposition on land-use type. In China, Nr 
deposition is concentrated in forested and northern agricultural areas. 
Derived exclusively from spruce forest data, PE1992 overestimates 
Nr deposition in eastern forests and the western barren region, while 
underestimating it over northern farmland; these opposing biases 

cancel out in the national total, masking its substantial inaccuracy 
relative to E2020 (Extended Data Fig. 2). By integrating multi-surface 
observations, E2020 performs robustly across land-cover types31, 
and its velocity estimates over flat terrains such as deserts and water 
bodies (Fig. 1b) align closely with recent observational data31,46. Thus, 
neglecting the improvements made in land-use type representation 
in E2020 introduces considerable biases in estimating Nr deposition 
distribution across China.

Furthermore, our analysis highlights a persistent trend in ESMs 
underestimating the dry deposition of particulate NH4

+. Comparing 
Coupled Model Intercomparison Project Phase 6 (CMIP6) historical 
simulations with our observation-constrained estimates, we find that 
the deposition values derived from ESMs are 31%–98% lower (Fig. 2b). 
Beyond differences in dry deposition mechanisms, uncertainties are 
further amplified by the oversimplification of atmospheric processes 
in ESMs, particularly regarding aerosols and chemistry schemes47. This 
comparison focuses solely on NH4

+ due to the absence of separate NO3
− 

deposition data in the CMIP6 dataset.
The observation-based NNDMN dataset in China is of great impor-

tance for understanding nitrogen cycling both locally and globally48,49. 
However, our analysis reveals that NNDMN has underestimated par-
ticulate Nr dry deposition in China. In the NNDMN, particulate Nr dry 
deposition was calculated by integrating particle dry deposition veloci-
ties simulated by GEOS-Chem with ground-level measurements of 
NO3

− and NH4
+ concentrations from 32 monitoring sites across China18. 

Thus, this underestimation is primarily attributed to GEOS-Chem’s use 
of the Z2001 dry deposition mechanism (Fig. 2a)18. By incorporating 
our observation-constrained particle size distribution and dry depo-
sition mechanism31, we update the 2015 particulate dry Nr deposition 
estimates for NNDMN, showing a twofold increase compared to the 
original data (Fig. 2c)18. Together, particulate nitrogen dry deposition 
across China is far larger and far more uneven than current models and 
observation-based datasets suggest.

Improved prediction of nitrate aerosol 
concentrations
Accurate predictions of Nr concentrations are crucial for improving 
estimates of particulate Nr dry deposition fluxes and enhancing air qual-
ity forecasting. The persistent overestimation of atmospheric particu-
late NO3

− concentration in China by many CTMs remains an unresolved 
issue50,51. Our study shows that integrating observation-constrained 
particle size distribution with the new E2020 particle dry deposition 
mechanism can greatly reduce this overestimation. Figure 2d compares 
simulated particulate NO3

− concentrations across various experiments. 
We found that the normalized mean bias (NMB) for NO3

− in the most 
commonly used mechanisms (Msize_BS1995 and Msize_Z2001) was as 
high as 84% and 53%, respectively. However, after applying observa-
tion constraints, the NMB decreased to 67% and 44% (Osize_BS1995 and 
Osize_Z2001), highlighting the importance of particle size constraints in 
NO3

− concentration simulations. Under the Osize_PE1992 and Osize_E2020 
mechanisms, the NMB dropped further to 13% and 14%, respectively, 
indicating that the BS1995 and Z2001 mechanisms largely overestimate 
aerosol NO3

− concentrations in China. The fraction of simulation within 
a factor of two (FAC2) for NO3

− varies from 44% to 56%. Osize_E2020 shows 
up to 12% improvement compared to other experiments (Fig. 2d). Note 
that FAC2 evaluates the proportion of simulated values within a twofold 
range of observed values, making it essential to further evaluate model 
accuracy using the NMB indicator.

Both PE1992 and E2020 mechanisms greatly improve the simu-
lation of particulate NO3

− concentration in China when particle size 
distributions are constrained by observations. However, PE1992 is 
based solely on observations in spruce forests and extrapolated to all 
other land-cover types52, which introduces considerable uncertain-
ties in dry deposition across diverse landscapes31. Furthermore, as 
an earlier mechanism, PE1992 has largely been replaced by the newer 
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BS1995 and Z2001. In contrast, E2020 provides a more comprehensive 
representation of various land-use types, improving its applicability 
for accurate Nr deposition modelling across different land surfaces. 
Therefore, E2020 is the preferable choice for Nr deposition modelling.

The simulation of particulate NH4
+ concentration showed lim-

ited improvement in CTMs. The FAC2 values for NH4
+ in all experi-

ments remained 61%–65% and highest for Osize_PE1992 and Osize_E2020 
(Fig. 2d). Most experiments overestimated NH4

+ concentrations (NMB 
values between 4.5% and 32%), whereas Osize_PE1992 and Osize_E2020 
slightly underpredicted them (NMB values of −17% and −14.7%, respec-
tively; Fig. 2d). Accurate simulation of NH4

+ is challenging, and an NMB 
value within ±30% has previously been considered acceptable53,54. 
The limited improvement is probably due to uncertainties in China’s 
NH3 emissions inventory, as highlighted by recent studies55,56. Our 
additional simulations show that increasing NH3 emissions improves 
the NH4

+ concentration simulation using the new E2020 mechanism 
(Supplementary Text 3), suggesting that improving NH3 emissions 
inventories could be important to better NH4

+ simulations.
We conducted sensitivity experiments to assess the impact of 

the limited improvement in NH4
+ concentration simulation on our 

conclusion that particulate Nr dry deposition is substantially under-
estimated in China. These experiments revealed that, regardless of 
NH3 emission levels, total particulate Nr deposition under the new 
mechanism (Osize_E2020) was approximately five times higher than 
under the default model (Msize_BS1995) (Supplementary Tables 2 and 3).  
This finding reinforces our hypothesis of the substantial particulate Nr 
dry deposition underestimation in China. Additionally, the simulation 
of wet NH4

+ deposition using the new mechanism showed good agree-
ment with observations (NMB and FAC2 of −20.6% and 82%, respec-
tively (Supplementary Fig. 1), indicating its applicability to NH4

+ wet 
deposition. Sensitivity tests also revealed that the new mechanism’s 
total atmospheric Nr deposition is less sensitive to NH3 emissions vari-
ations compared to the default mechanism (Supplementary Tables 2 
and 3), suggesting greater robustness in deposition simulations. Thus, 
the limited improvement in NH4

+ concentration simulation does not 
change the conclusion regarding the substantial underestimation of 
particulate Nr dry deposition in China.

However, our simulations of particulate NO3
− and NH4

+ concen-
trations show substantial improvements compared to those of ESMs. 
Among the six ESMs in Fig. 2b, which published simulated NO3

− (five 
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Fig. 3 | The impact of nitrogen deposition variation on the terrestrial carbon 
sink in China. a,b, The impact of changes in nitrogen deposition on NEP over 
China under observation-derived experiment (ObsSim) compared to the 
nitrogen deposition from WRF-Chem default (a) and GEOS-Chem default (b). 
Grey lines indicate provincial boundaries, and black lines delineate the eight 
regions used in the analysis. c, The impact of the observation-derived experiment 
on total nitrogen deposition across different regions in China, compared with 
two typical model experiments (WRF-Chem default and GEOS-Chem default). 
d, Re-evaluating the impact of nitrogen deposition on terrestrial carbon sinks in 

China. This panel demonstrates the impact of nitrogen deposition changes of the 
observation-derived experiment compared with two typical model experiments 
(WRF-Chem default and GEOS-Chem default) on terrestrial carbon balance 
(NPP, HR and NEP) in different regions in China. HR represents heterotrophic 
respiration. Maps based on the original NCAR Command Language (NCL) map 
framework with updated boundary information derived from the National 
Catalogue Service for Geographic Information of China (http://www.webmap.cn/
commres.do?method=result100W).
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models) and NH4
+ (six models) concentrations, all of them under-

estimated the observed concentrations, with NMB ranging from 
−16% to −97% and average NMB of −42% and −49% for NO3

− and NH4
+, 

respectively (Fig. 2d). These deviations are larger compared to those 
for our study (Fig. 2d). In contrast to CTMs, many ESMs oversimplify 
atmospheric processes, resulting in inadequate representations of the 
atmospheric nitrogen cycle57. Our findings highlight the critical need 
to improve the representation of the atmospheric nitrogen cycle in 
ESMs to enhance the accuracy of Nr concentration and dry deposition 
simulations, which are essential for interdisciplinary climate studies.

Implications for nitrogen deposition and 
terrestrial carbon sinks
The reliability of atmospheric Nr deposition modelling is critical, as it 
directly affects air quality and carbon sink assessments, with impor-
tant implications for public health and climate change projections4,10. 
Here we demonstrated that inadequate representation of particle size 
distribution causes a substantial underestimation of particulate dry 
Nr deposition across China. Moreover, the uncertainty surrounding 
particle dry deposition mechanisms further exacerbates the divergence 
in deposition estimates. Most models overlook the combined impacts 
of particle size distribution and dry deposition mechanisms, leading to 
considerable underestimation of particulate dry Nr deposition in China.

We evaluate the impact of our updated dry deposition of par-
ticulate Nr on the overall Nr deposition. Our updated modelling result 
demonstrates a notable increase (11%–18%) in China’s total Nr depo-
sition compared to standard model experiments (Msize_BS1995 and 
Msize_Z2001), which have been widely used in previous studies. The 
increase mainly occurs in eastern China (Extended Data Fig. 3). This 
suggests that ecological risks, such as soil acidification and biodiversity 
loss, may be more severe than previously recognized58. Seasonal analy-
sis reveals a more pronounced increase in total Nr deposition during 
winter, coinciding with frequent haze events (Supplementary Fig. 2), 
implying a reduced contribution of Nr to haze formation51. Further-
more, the model shows a marked shift in the composition of Nr depo-
sition (Supplementary Fig. 3), with the proportion of particulate Nr 
dry deposition in total Nr deposition increasing from 5%–12% to 20%, 
altering the dry-to-wet deposition ratio from 2:3 to nearly 1:1. This 
suggests that soils may accumulate more Nr during the dry season, 
reducing their nitrogen nutrient loss59.

Our research highlights the importance of particulate dry Nr 
deposition in the terrestrial carbon cycle. By coupling the updated 
WRF-Chem with Community Land Model version 5 (CLM5), which well 
captures carbon fluxes (Extended Data Fig. 4), we demonstrate that 
underestimating particulate dry Nr deposition results in a 9%–13% 
underestimation of the impact of Nr deposition on China’s terrestrial 
net ecosystem productivity (NEP, 11–16 TgC yr−1; 1.2–1.7 gC m−2 yr−1; 
Fig. 3a,b), with a corresponding 18–28 TgC yr−1 underestimation of net 
primary productivity (NPP). This discrepancy offsets CO2 emissions 
from China’s lakes and reservoirs (12 TgC yr−1) (ref. 60) or rivals NPP 
gains from aerosol reductions under China’s Clean Air Action Plan 
(20 TgC yr−1) (ref. 61). Furthermore, this overlooked carbon sink matches 
global carbon fluxes from key processes62,63, such as marine algal CO2 
sequestration (4–44 TgC yr−1). Consequently, refining particle size 
and dry deposition velocity representations is critical for accurately 
evaluating terrestrial carbon uptake and national carbon budgeting.

Accurate estimates of atmospheric Nr deposition are crucial for 
reliable regional carbon sink assessments. We find that the under-
estimation of Nr deposition’s impact on NEP is especially substan-
tial in the East, Central and South regions (4.4, 3.6 and 3.3 gC m−2 yr−1, 
respectively; Fig. 3c,d), twofold to threefold greater than the national 
average. These regions experience the largest shifts in atmospheric 
Nr input and contain extensive, nitrogen-limited natural vegetation 
(Supplementary Fig. 4)64, making them especially responsive to addi-
tional Nr inputs that boost carbon sequestration. In the North region, 

deposition changes are comparable to those in the South region (3.2 
vs 3.2 kgN ha−1 yr−1; Fig. 3c), but cropland fertilization already supplies 
ample Nr65, keeping the NEP response to just 1.8 gC m−2 yr−1 (Fig. 3d). 
Correcting this spatial bias is therefore essential for robust regional 
carbon-budget projections.

The uncertainties in this study primarily stem from the simulations 
of atmospheric Nr deposition and terrestrial carbon sinks. Although 
we conducted a detailed analysis of aerosol particle size distributions 
in multiple regions of China, ensuring the applicability of the obser-
vations, limitations in data availability still contribute to uncertainty. 
More broadly, investigations of aerosol particle size distributions in 
many regions remain relatively insufficient. Whereas we have made 
progress in improving CTM simulations of particulate NO3

−, some 
underestimation of NH4

+ remains. Previous studies have highlighted 
the large uncertainties in China’s NH3 emissions inventories, which 
directly affect atmospheric NH4

+ simulations. Future improvements 
in NH4

+ simulations may focus on enhancing the accuracy of the NH3 
emissions inventory. Additionally, differences in spatial resolution 
between WRF-Chem and CLM, along with their treatment of land cov-
ers, may affect model coupling. Finally, uncertainties in CLM’s handling 
of land-management practices, such as nitrogen fertilization, could 
affect terrestrial carbon sink assessments. Besides nitrogen deposition, 
NEP estimates are also affected by other factors such as climate and 
CO2 concentration66, which may introduce additional uncertainties. 
As more measurements and improved statistical methods emerge, 
updating these estimates will be essential.

Finally, the larger deposition flux suggests that achieving China’s 
ambitious ecosystem carbon sequestration goals may be more chal-
lenging than expected. With China’s strategic plan to reduce pollu-
tion emissions, a substantial decrease in atmospheric Nr deposition 
is anticipated in the coming decades48,67. The strictest Nr reduction 
scenario projects a 65% decrease in emissions by the 2050s68. Consid-
ering only future emissions changes, assuming all other conditions 
remain constant, and incorporating WRF-Chem results along with 
the relationship between changes in anthropogenic emissions and 
nitrogen deposition67, CLM implies that this reduction could cumu-
latively decrease China’s NEP by 1,400 TgC by 2050. This reinforces 
the long-held concern that while controlling Nr pollution is vital, it 
may weaken terrestrial carbon sinks, potentially exacerbating global 
warming throughout the twenty-first century. Reducing greenhouse 
gas emissions is essential to balance the environmental feedback loops 
and mitigate climate change impacts.
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Methods
Observations
To validate the model’s particulate NH4

+ and NO3
− concentration results 

and calculate the particulate dry deposition fluxes, we utilized surface 
particulate NH4

+ and NO3
− concentration data from NNDMN in China. 

NNDMN, a national-scale monitoring network, provides monthly aver-
age surface concentrations of major N-containing compounds and 
monthly accumulated dry and wet (bulk) deposition data of nitrogen 
species from 2010–2015 across 32 sites in China18. Similar to US Clean 
Air Status and Trends Network and National Atmospheric Deposition 
Program in the USA, NNDMN’s wet deposition fluxes are monitored 
data, whereas dry deposition fluxes for gaseous and particulate species 
are derived from model-simulated deposition velocities (for example, 
GEOS-Chem) combined with measured Nr concentration. In this study, 
we specifically used NNDMN data from 2015 (Supplementary Fig. 5). 
When comparing the model-simulated particulate Nr concentration 
data, we excluded observational data from the Wuwei station due to 
its rapidly increasing NH3 emissions in recent years69, which are not 
accurately captured in the NH3 emissions inventory. Furthermore, in 
China, there is a lot of monitoring data related to the chemical com-
position analysis of PM2.5, providing additional nitrogen-containing 
aerosol concentration data to evaluate the model’s performance. 
Here monthly average surface concentrations of NO3

− and NH4
+ in 

PM2.5 aerosols were compiled from 102 sets of data, each set represent-
ing a different month at a different site, as reported in the published 
literature. These data, measured at 40 monitoring sites across China, 
are detailed in Supplementary Table 5 and Supplementary Fig. 5, with 
all measurements conducted in 2015. We also gathered observations 
from 2014 to evaluate the ESMs’ outputs from CMIP6 historical simula-
tions (Supplementary Table 6 and Supplementary Fig. 5), as most ESMs 
simulate data only up to that year.

To illustrate the characteristics of aerosol particle size distribu-
tion under varying pollution conditions in China and to constrain 
the model’s simulated size distributions of NO3

−, NH4
+ and SO4

2− aero-
sols, we sourced data from 13 previous studies on size-segregated 
aerosols during different levels of polluted days across China 
(Supplementary Table 1 and Supplementary Fig. 5). Observational 
data on size-segregated aerosols in China are sparse and limited. 
The sampling seasons, air pollution conditions classifications and 
designed cut-off sizes of samplers varied across different studies 
(Supplementary Table 1), making it impractical to use all observational 
data to constrain the model. However, these observations indicated 
similar particle size distribution properties across different Chinese 
cities, suggesting a degree of generality (Supplementary Text 4 and 
Extended Data Fig. 1). Thus, we applied detailed observations from 
Beijing and Tianjin70,71, which had consistent standards for classifying 
air pollution conditions and particle sizes and included four seasons 
of long-term measurements, to refine the model’s simulated particle 
size distribution of NO3

−, NH4
+ and SO4

2− aerosols. Observations from 
all other sites were used for model verification (Extended Data Fig. 1). 
Following the National Ambient Air Quality Standard issued by the 
government and based on previous research70,72, three air pollu-
tion conditions in China were defined based on daily atmospheric 
PM2.5 concentrations: normal days (PM2.5 < 75 µg m−3), lightly pol-
luted days (75 µg m−3 ≤ PM2.5 < 150 µg m−3) and heavily polluted days 
(PM2.5 > 150 µg m−3).

The observed wet deposition data of NH4
+ and NO3

− in 2015 were 
obtained from EANET. The wet deposition data from NNDMN include 
both wet and a portion of dry deposition18, resulting in values higher 
than actual wet deposition observations. Thus, we utilized observa-
tional data from EANET for a more accurate evaluation of the model’s 
performance. Because not all EANET stations fall within our simulation 
area, we selected data from 24 stations located within our simulation 
domain (Supplementary Fig. 6) to evaluate the accuracy of the wet 
deposition simulated by the model.

Atmospheric chemical transport model configurations
We employed a regional high-resolution CTM, WRF-Chem model ver-
sion 3.9, for simulating emissions, transport, chemical reactions and 
both dry and wet deposition of various Nr species (that is, NO, NO2, 
HNO3, NH3, N2O5, nitrate radical (NO3), HONO, HNO4, Peroxyacetyl 
nitrate (PAN), organic nitrate (ONIT), NH4

+ aerosol and NO3
− aerosol) 

over China. The model, which has been widely used in previous studies 
for regional air quality and Nr deposition simulations73–77, operates at 
a 30-km horizontal resolution and includes 30 vertical layers. In this 
study, the meteorological initial and boundary conditions were pro-
vided by the 1° × 1° Final analysis data from the National Centers for 
Environmental Prediction. The chemical initial and boundary condi-
tions were derived from the CAM-Chem model78. The gas-phase chemis-
try used in the present study was based on the Carbon Bond Mechanism 
version Z mechanism79. The aerosol treatments in the model were repre-
sented by the Model for Simulating Aerosol Interactions and Chemistry 
(MOSAIC) aerosol module with eight aerosol size sections (that is, 
0.0390625–0.078125, 0.078125–0.15625, 0.15625–0.3125, 0.3125–
0.625, 0.625–1.25, 1.25–2.5, 2.5–5.0 and 5.0–10.0 μm in dry particle  
diameter)39. Following previous studies80,81, we used the geometric 
mean diameter of the maximum and minimum particle sizes in each 
size stage to calculate the particle size distribution. On the basis of prior 
sampling research80,82, the aerosols are primarily under dry conditions 
during sampling. Consequently, we excluded aerosol water content 
when computing aerosol size distributions.

The wet deposition processes of gases and aerosols were mod-
elled using the standard approach, which includes both in-cloud and 
below-cloud scavenging83. To calculate the total wet deposition of 
nitrogen-containing aerosols, we aggregated all wet scavenging pro-
cesses. This includes the wet removal of aerosols by resolved clouds 
and precipitation, the wet removal of aerosol precursor gases (HNO3 
for NO3

− and NH3 for NH4
+) by resolved clouds/precipitation and the 

wet removal of precursor gases and aerosols by convective clouds/
rain77. The dry deposition of gases was modelled following Wesely’s 
scheme84. For the dry deposition of particles, we considered four 
size-dependent dry deposition parameterizations, detailed further 
in the study.

Surface properties, such as land-use type, notably influence aerosol 
dry deposition velocity31,45. Land-use types in China have undergone 
considerable changes over the past decades. The default land-use data-
set in the WRF-Chem model, based on data from 1992, is outdated for 
our 2015 simulations over China (Supplementary Table 7). To address 
this, we replaced the default US Geological Survey land-use data in the 
WRF-Chem model with the more recent Global Land Cover 2015 dataset85. 
The detailed physical and chemical settings of the WRF-Chem model 
configurations are presented in Supplementary Table 8. The emissions 
data utilized in this study are described in Supplementary Text 5.

Particle size distribution
We considered two types of particle size distribution treatment 
in the atmospheric chemistry model. One is the standard model’s 
particle size distributions, denoted as ‘Msize’. The other one is the 
observation-constrained particle size distribution, denoted as ‘Osize’. 
For the observation-constrained approach, we used observationally 
constrained particle sizes for NO3

−, NH4
+ and SO4

2− aerosols under the 
three typical air pollution conditions (normal, lightly polluted and 
heavily polluted) in 2015 mentioned earlier. As the formation of NO3

−, 
NH4

+ and SO4
2− aerosols in the atmosphere mutually influence each 

other23,86, previous observations have shown similar size distribu-
tion patterns in the accumulation mode for these three aerosols70,71. 
Therefore, we constrained the size distribution of these aerosol 
species simultaneously.

In the Osize simulations, we first determined daily average PM2.5 
concentrations for all model grid cells using the WRF-Chem standard 
model (Msize_BS1995; ‘Aerosol dry deposition mechanisms’). We then 

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-025-01873-3

classified air pollution conditions for each grid cell according to the 
daily average PM2.5 concentration at the surface for each time step. 
On the basis of observational data (‘Observations’), we constrained 
the size distributions of NO3

−, NH4
+ and SO4

2− aerosols in the simula-
tions according to different air pollution conditions. Specifically, the 
particle size distributions of these aerosols were set to modal sizes 
of 0.60 μm, 0.69 μm and 0.92 μm and geometric standard deviations 
of 1.8 μm, 1.95 μm and 1.94 μm, under normal, lightly polluted and 
heavily polluted days, respectively. Particles with diameters smaller 
than 2.5 µm are typically classified as ‘fine,’ whereas those larger 
than 2.5 µm are referred to as ‘coarse’35. We focused on the particle 
size distribution of the fine mode, as secondary inorganic aerosols 
such as NH4

+ and NO3
− are predominantly found in smaller particle 

sizes23,24,82. Hence, we constrained the distributions of the three 
inorganic aerosol components within the first six bins of the MOSAIC 
model. During this process, we ensured that the total concentra-
tion of a certain aerosol component in these six size bins remained 
unchanged. We then used the observed particle size distribution to 
refine the distribution of aerosols within the different size segments. 
By doing so, we updated the aerosol concentrations for each size bin 
and calculated the subsequent dry deposition based on the revised 
particle size distribution. These constraints were applied for each 
grid cell.

Aerosol dry deposition mechanisms
In this study, we considered four dry deposition mechanisms for 
particulate matter in the WRF-Chem atmospheric chemistry model: 
‘BS1995’, ‘PE1992’, ‘Z2001’ and ‘E2020’. These mechanisms are based on 
aerosol dry deposition models from Binkowski and Shankar42, Peters 
and Eiden41, Zhang et al.43 and Emerson et al.31, respectively. The BS1995 
mechanism is the default dry deposition mechanism for aerosols in the 
MOSAIC module of the WRF-Chem model87. PE1992 was once widely 
used, though it is no longer recommended. It remains an optional dry 
deposition scheme in the WRF-Chem model with the MOSAIC module. 
The Z2001 mechanism is extensively applied in various CTMs and ESMs, 
such as GEOS-Chem, CAMx, CESM-CAM5 and WRF-Chem model44,88–90. 
The E2020 mechanism is the newest particle dry deposition mechanism 
developed by Emerson et al., an observationally constrained param-
eterization recently introduced in GEOS-Chem31.

These four particle dry deposition mechanisms simulate particle 
deposition rates using distinct approaches. In most CTMs, the dry 
deposition algorithms calculate the particle deposition velocity as a 
function of the particle size. Most particle dry deposition mechanisms 
in the current CTMs are derived from the trailblazing work of Slinn 
et al.91–93. Slinn et al. divided the boundary layer into two layers: the 
aerodynamic layer and the vegetation layer. The upper layer, from a 
certain reference height to the canopy top, is defined as the aerody-
namic layer. The lower layer, which is from the top of the vegetation 
to the ground, is defined as the vegetation layer.

The dry deposition velocity of particles (Vd, m s−1) is generally 
represented by the following equation:

Vd = Vg +
1

Ra + Rs
(1)

in which, Vg is the gravitational settling velocity (m s−1), which is present 
throughout the whole of the deposition process; Ra, the aerodynamic 
resistance (s m−1), represents the resistance encountered by particles 
falling through the aerodynamic layer, specifically the resistance of 
particulate matter descending from a certain height to Earth’s surface. 
This resistance is associated with airflow transport and turbulent 
mixing effects; Rs is the surface resistance (s m−1), representing the 
resistance of particles in the vegetation layer. The surface resistance 
mainly contains the loss efficiency caused by three main physical 
processes: Brownian diffusion, interception and impaction and is 

corrected using the rebound coefficient. The surface resistance is 
expressed as below31:

Rs =
1

ε0u∗ (EB + EIM + EIN)R
(2)

where ε0 is the empirical coefficient (unitless); u∗ is the friction velocity 
(m s−1); EB is the collection efficiency from Brownian diffusion (unitless), 
which refers to the random movement of particles in the atmosphere 
and non-convective diffusion; EIM is the collection efficiency from 
impaction (unitless), which refers to the phenomenon that particles 
with high inertia, unable to move with the airflow and directly impact 
with the surface; EIN is the collection efficiency from interception (unit-
less), which refers to the phenomenon that particles with low inertia 
flowing with the flow field are trapped within a distance from the col-
lector less than the single-particle radius of the collector; R is the 
rebound correction factor of particles (unitless), which refers to the 
reduction of particles collected on the surface due to the rebound 
effect. Using different particle size distributions affects Rs because the 
three processes are size-dependent (Extended Data Table 1), leading 
to differences in dry deposition velocity calculations using 
different mechanisms.

The four particle dry deposition mechanisms employed in our 
study all utilize a resistance model similar to the one described above 
to calculate the dry deposition velocity of atmospheric particles. Each 
mechanism, however, differs in specific parameters and analytical 
approaches, detailed in Extended Data Table 1. The primary distinc-
tion among the four mechanisms mainly comes from the surface 
resistance, whereas the differences in gravitational settlement and 
aerodynamic resistance are relatively minor52,94. Notably, the E2020 
mechanism, refined through extensive observations across various 
land-use types, is the most up to date and provides the most accurate 
method for quantifying atmospheric Nr deposition. Consequently, 
we tested and applied this latest mechanism to quantify atmospheric 
Nr deposition in China.

Simulation experiment design
To examine the effects of particle size distribution and dry depo-
sition mechanisms on the particulate Nr deposition over China, 
eight WRF-Chem simulation experiments were conducted 
(Supplementary Table 9): Msize_BS1995, Msize_PE1992, Msize_Z2001,  
Msize_E2020, Osize_BS1995, Osize_PE1992, Osize_Z2001 and Osize_E2020. 
These simulations were set in the year 2015, primarily due to the avail-
ability of relevant observational data. Among the eight experiments, 
three key experiments (that is, Msize_BS1995, Msize_Z2001 and Osize_
E2020) were conducted for 12 months, from January to December, 
with five days of model spin-up for each monthly simulation. These 
three experiments were selected because they represent typical results 
from previous studies: the default WRF-Chem setting, the default 
GEOS-Chem setting and the observation-constrained result from this 
study. The differences in the impact of particle size distribution and 
dry deposition mechanisms on Nr deposition were derived from these 
three experiments. The full 12-month Nr deposition results from these 
three experiments were used to drive the land surface model to evaluate 
the impact of nitrogen deposition on terrestrial carbon sinks.

Because WRF-Chem includes detailed atmospheric processes and 
achieves good simulation accuracy, the computation time and resource 
costs are considerable. To optimize computational efficiency, previous 
studies have simplified simulation durations by selecting representa-
tive months to estimate annual deposition fluxes76,95,96. Therefore, in 
this study, the remaining five simulation experiments were run for 
January, April, July and October to represent the four seasons. To vali-
date this approach, we compared the annual totals of the four-month 
results from Msize_BS1995, Msize_Z2001 and Osize_E2020 to those using 
the full 12-month results. The results were highly consistent, with 
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a proportional coefficient of 3.1 across all three experiments. Con-
sequently, we applied a factor of 3.1 to the deposition estimates for 
January, April, July and October to compute the annual total when we 
needed to analyse the differences across all eight experiments.

The dry deposition flux (Fi, μgN m2 s−1) of a specific particulate 
Nr species (i) in the WRF-Chem model was predicted by multiplying 
surface concentration (Ci, μgN m−3) by the dry deposition velocity  
(Vd,i, m s−1) of the species, as expressed by the following equation:

Fi = −Ci × Vd,i (3)

Land surface model simulations
We employed the state-of-the-art CLM5 model97 to investigate the 
impact of Nr deposition on the terrestrial carbon sink in China. CLM5 
is a process-based land surface model that describes the cycling of 
energy, water, momentum, carbon, nitrogen and other trace gases 
in terrestrial ecosystems. It has been widely applied in the area of the 
intersection of weather and climate with terrestrial processes, such 
as exploring the carbon and nitrogen cycle interactions and assess-
ing ecosystems’ response and vulnerability to climate change and 
disturbances98. Compared to previous versions, CLM5 incorporates 
notable improvements representing nitrogen cycling, including the 
implementation of flexible plant C:N ratios, accounting for carbon 
costs associated with nitrogen acquisition based on the Fixation and 
Uptake of Nitrogen model and optimizing leaf nitrogen content for 
photosynthesis97. The improvements in carbon and nitrogen cycling 
and coupling processes allow us to effectively evaluate how the ter-
restrial carbon cycle responds to Nr deposition changes.

We conducted several CLM5 simulation experiments over China 
from 1850 to 2014, with a resolution of 1.9° × 2.5°, following the method 
in published literature75. The simulations were forced with the Global 
Soil Wetness Project 3 version 1 climate reconstructions. Initially, 
we commenced the model spin-up process to achieve a steady state. 
During this phase, we maintained the atmospheric CO2 concentra-
tion and land-cover data consistent with the year 1850, fixed nitrogen 
deposition at 1850 levels and set the climate forcing for the period of 
1901–1920. Subsequently, we conducted historical simulations for the 
period of 1850–1900. Because the forcing data were available only from 
1901 onwards, we used recycling climate forcings from 1901 to 1920 
for the earlier simulations before 190099. Incorporating other input 
data, we accounted for the rise in CO2 concentration, increased Nr 
deposition and changes in land cover over time. Then, all simulations 
were run from 1901 to 2004, encompassing time-varying atmospheric 
CO2 concentration, Nr deposition, land-cover data and climate forc-
ings. Finally, we performed simulations from 2005 to 2014, employing 
atmospheric CO2 concentration and land-cover data from transient 
datasets. For this 10-year period, following published literature75, we 
varied Nr deposition fluxes in the model by substituting the default Nr 
deposition data with three distinct sets derived from WRF-Chem 2015 
simulations: Msize_PS1995 (default settings in the WRF-Chem model), 
Msize_Z2001 (default settings in the GEOS-Chem model) and Osize_E2020 
(settings constrained by observations). The ten-year averaged model 
results from 2005 to 2014 were used to analyse the terrestrial carbon 
sink budget. Following previous studies65,75, NEP was selected as the 
indicator for the land carbon sink.

In the CLM model, land-use data is integrated using a nested sub-
grid hierarchy, where grid cells consist of multiple land units, columns 
and patches97. In contrast, WRF-Chem incorporates land-use data 
through interpolation100. Despite different processing methods, both 
models use land-use data derived from historical remote sensing data, 
ensuring consistency. To drive the CLM model with WRF-Chem Nr 
deposition data, we resampled the grid cells during the resolution 
conversion process to maintain consistency with the total Nr deposi-
tion. However, this process probably introduces some uncertainty 

in the flux distribution across adjacent grid cells. Additionally, the 
CLM model includes nitrogen fertilizer application data for both fer-
tilizer and manure applications. Industrial fertilization is based on 
crop type, year and country, using fertilization rates from the Land Use 
Harmonization Version 2 dataset, whereas manure-based fertilization 
is applied uniformly at a rate of 2 gN m−2 yr−1 (ref. 101). Although efforts 
are underway to improve manure application representation, including 
transient application rates and N fluxes, these have not been included 
in the released version of CLM5101. To validate our terrestrial carbon 
uptake modelling, we employed NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS)/Terra NPP product, which has a spatial 
resolution of 0.1 degrees. Our comparison of CLM5 with the NPP prod-
uct indicates that CLM5 demonstrates reliable accuracy in carbon cycle 
modelling, evidenced by a high R2 value of 0.74 (Extended Data Fig. 4).

Data availability
The underlying data employed in this study are available from sources 
cited in the main text and Supplementary Information or are pro-
vided in Supplementary Data. The CMIP6 data are available at https://
aims2.llnl.gov/search/cmip6/. The revised map database is available 
via GitHub at https://github.com/huangynj/NCL-Chinamap.

Code availability
The default WRF-Chem model source code is freely available at https://
www2.mmm.ucar.edu/wrf/users/download/get_sources_new.php. 
The CLM5 model code is available via Github at https://github.com/
ESCOMP/CTSM/releases.
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Extended Data Table 1 | Aerosol dry deposition schemes

Variable PE1992 BS1995 Z2001 E2020

Vd Vd = Vg +
1

Ra+Rs
Vd = Vg +

1
Ra+Rs+RaRsVg

Vd = Vg +
1

Ra+Rs+RaRsVg
Vd = Vg +

1
Ra+Rs+RaRsVg

Rs Rs =
1

u∗(EB+EIM+EIN)R
Rs =

1
u∗(EB+EIM)

Rs =
1

ε0u∗(EB+EIM+EIN)R
Rs =

1
ε0u∗(EB+EIM+EIN)R

EB EB = Sc−
2
3 EB = Sc−

2
3 EB = Sc−γ

γ ∈ [0.50,0.58] EB = 0.2 ∗ Sc−
2
3

EIM EIM = ( St
0.8+St

)
2

EIM = 10− 3
St EIM = ( St

α+St
)
2

EIM = 0.4 ∗ ( St
α+St

)
1.7

EIN EIN = (0.00116+0.0061z0)dp

1.414∗10−7 EIN = 1
2
( dp

A
)
2
(vegetated surfaces)

EIN = 0(smooth surfaces)

EIN = 2.5 ∗ ( dp

A
)
0.8

(vegetated surfaces)

EIN = 0(smooth surfaces)

R R = e−2√St R = e−√St R = e−√St

St St = ρpd2
p

9μdc
u St = u2

∗Vg

gv
St = Vgu∗

gA
 (vegetated surfaces)

St = Vgu2
∗

gv
 (smooth surfaces)

St = Vgu∗
gA

 (vegetated surfaces)

St = Vgu2
∗

gv
 (smooth surfaces)

Vg ρpd2
pgCc

18μ
ρpd2

pgCc

18μ
ρpd2

pgCc

18μ
ρpd2

pgCc

18μ

Sc
v
D

v
D

v
D

v
D

Reference 41 42 43 31

The physical meaning of the main parameters in the Table: Vd is the dry deposition velocity; Rs is the surface resistance; EB is the collection efficiency from Brownian diffusion; EIM is the 
collection efficiency from impaction; EIN is the collection efficiency from interception; R is the bounce correction factor; St is the Stokes number; Vg is the gravitational settling velocity;  
Cc is the Cunningham correction factor; Ra is the aerodynamic resistance; ε0 is the coefficient; u∗ is the friction velocity; Sc is the Schmidt number; u is the horizontal wind speed; dp is the 
particle diameter of the particulate matter; dc is the diameter of the obstacle; μ is the aerodynamic viscosity; ρp is the density of the particulate matter; A refers to the characteristic radius of 
collectors; v represents the kinematic viscosity of air; D is the Brownian diffusivity of particles, which is related to the particle diameter.
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Extended Data Fig. 1 | Observed particle size distributions of NO3
−, NH4

+, and 
SO4

2− aerosols under different air pollution conditions in China. The blue 
curves, ranging from light to dark, represent simulated results with pollution 
levels increasing from low to high, corresponding to the left y-axis. Similarly, the 
red curves, ranging from light to dark, depict observed results with increasing 
pollution levels from low to high, corresponding to the right y-axis. ‘SIM’ means 

simulations. ‘OBS’ means observations. ‘N’ means normal days. ‘LP’ means lightly 
polluted days. ‘HP’ means heavily polluted days. Daily air quality levels were 
classified based on average daily PM2.5 values. Some cities did not have heavily 
polluted days during the simulation period, resulting in the absence of some 
locations in SIM_HP figures. The observations here are obtained from previous 
publications102,103.
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a. unit: kgN ha-1 yr-1

b. unit: kgN ha-1 yr-1

Extended Data Fig. 2 | Changes in particulate nitrogen dry deposition 
over China constrained by observed particle size and new deposition 
mechanisms. The spatial distribution of total particulate nitrogen dry 
deposition over China from the eight simulation experiments (a) and change in 
total particulate nitrogen dry deposition of the observation-derived experiment 

(Osize_E2020) compared with each other simulation experiment (b). Maps 
based on the original NCAR Command Language (NCL) map framework with 
updated boundary information derived from the National Catalogue Service 
for Geographic Information of China (http://www.webmap.cn/commres.
do?method=result100W).
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a. unit: kgN ha-1 yr-1

b. unit: kgN ha-1 yr-1

Extended Data Fig. 3 | Changes in total nitrogen deposition over China 
constrained by observed particle size and new deposition mechanisms. 
The spatial distribution of total nitrogen deposition over China from the 
eight simulation experiments (a) and change in total nitrogen deposition of 
the observation-derived experiment (Osize_E2020) compared with each other 

simulation experiment (b). Maps based on the original NCAR Command 
Language (NCL) map framework with updated boundary information derived 
from the National Catalogue Service for Geographic Information of China (http://
www.webmap.cn/commres.do?method=result100W).

http://www.nature.com/naturegeoscience
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Extended Data Fig. 4 | The comparison of net primary productivity (NPP) 
between simulations with the NASA NPP observations across China. The gray 
line indicates the linear regression fit (mean estimate), and the gray shaded area 

denotes the 95% confidence interval for that regression line. Statistical metrics 
including R-squared (R2 = 0.74), root-mean-square deviation (RMSE = 155 gC m−2 yr−1)  
and fraction of simulation within a factor of two (FAC2 = 67%) are presented.
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