
Chemically Induced Decline in Wintertime SO2 Emission Control
Efficacy
Fanghe Zhao, Yuhang Wang,* and Shengjun Xi

Cite This: Environ. Sci. Technol. Lett. 2025, 12, 1190−1196 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The reduction of SO2 emissions from 2004 to 2023 has resulted in significant
decreases in SO2 and sulfate concentrations across the Rust Belt and Southeast of the United
States, regions with coal-combustion power plant emissions. While the observed sulfate-to-total-
sulfur ratio remained relatively constant at ∼30% in summer, this fraction increased from ∼10%
to ∼20% in winter from 2004 to 2013 and then remained at ∼20%. The rise in sulfate-to-total-
sulfur ratio resulted in a slower decrease of sulfate in 2004−2013 compared to 2013−2023
despite a greater reduction of SO2 in the earlier decade, reflecting a significant decline in the
efficacy of SO2 emission reduction in improving air quality in winter. The decrease in efficacy is
attributed to the increased oxidation of SO2 in winter because of the diminishing oversupply of SO2 compared to the availability of
atmospheric oxidant, H2O2. Consequently, the seasonal differences in SO2 and sulfate concentrations between summer and winter
have narrowed. This chemical damping effect, caused by limited oxidant availability, is likely to delay the reduction in sulfate
concentrations in other polluted regions where the transition from coal to natural gas in power plants or alternative energy sources
has not progressed as rapidly as in the United States.
KEYWORDS: SO2 Emission Control, Sulfate Formation, Oxidant-Limited Regime, Power Plant Transitions, Machine Learning Analysis

1. INTRODUCTION
Sulfate aerosols, primarily originating from sulfur dioxide
(SO2) emissions, are a significant contributor to air pollution
and pose substantial health risks.1−4 SO2 emissions mainly
come from power plants, particularly those burning coal and
oil.5−7 Sulfate aerosols from the oxidation of SO2 contribute
significantly to particulate matter with a size <2.5 μm (PM2.5),
impacting air quality, health, visibility, and climate.8,9 The
widespread impacts of sulfate pollution have led to stringent
emission control policies across industrialized nations,
resulting in substantial reductions in SO2 emissions from
power plants in recent decades.10,11 This emission reduction
has resulted in improved health outcomes. A previous study
estimated that mortality risk from exposure to coal PM2.5
decreased from 25% of all PM2.5 before 2009 to 7% after 2012
in the United States.12,13

The oxidation of SO2 to sulfate occurs through multiple
pathways in the atmosphere, including gas-phase oxidation by
hydroxyl radicals (OH) and aqueous-phase oxidation by
hydrogen peroxide (H2O2) or ozone (O3) in cloud droplets
or on aerosol surfaces.3,14−17 A recent work by Gao et al.18

demonstrated that H2O2-mediated oxidation dominates SO2-
to-sulfate conversion in the eastern United States, in contrast
to regions like West Asia where transition metal ion (TMI)-
catalyzed oxidation plays a more significant role.
Long-term monitoring efforts have revealed substantial

declines in both SO2 emissions and sulfate concentrations
across North America and Europe.10 In the United States, SO2
emissions have decreased by over 90% since the enactment of

the Clean Air Act Amendments in 1990.19 Notably, the most
significant decreases in both SO2 and sulfate occurred in the
Southeast from 1990 to 2015.20 Previous studies have mostly
focused on summertime reductions in SO2 and sulfate
concentrations.10,11,20 However, the seasonal differences have
not been studied extensively. An early study indicated
considerably less reduction in observed sulfate concentrations
in winter than summer in the 1990s.21

In this analysis, we analyze two decades (2004−2023) of
SO2 and sulfate observations over the Rust Belt and Southeast
regions, which collectively house 72% of U.S. coal power
plants. Our objective is to examine the distinct responses of
SO2 and sulfate concentrations to the reduction in SO2
emissions in summer and winter.

2. MATERIALS AND METHODS
2.1. Data Sources and Processing. Long-term sulfate

concentration data were obtained from the Interagency
Monitoring of Protected Visual Environments (IMPROVE)
network for Class I areas of national parks and wilderness areas
across the United States22,23 (Supporting Information Figure
S1). The IMPROVE network provides 24-h integrated PM2.5
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samples collected every third day. We applied the IMPROVE
data quality flags to exclude data affected by quality control
failures or potential contamination.24,25 Concurrent daily
average SO2 concentration data were computed using the
observations from the EPA’s Air Quality System (AQS), which
underwent similar quality control procedures. The AQS
measurements within a radius of 100 km were used to
compute the averages (Supporting Information Figure S2).
This proximity-based matching approach accounts for the
spatial mismatch between IMPROVE sites (located in remote
Class I areas) and AQS sites (primarily in populated areas). It
also captures regional-scale transport and mixing processes that
govern SO2-to-sulfate transformation over atmospheric life-
times of several days. To calculate power plant SO2 emissions,
we used the SO2 emissions data from individual power plants,
which were obtained from the EPA Hourly Continuous
Emission Monitoring System (CEMS) (Supporting Informa-
tion Figure S3).
To characterize the atmospheric oxidation environment, we

used ECMWF Atmospheric Composition Reanalysis 4
(EAC4), which provided several key oxidant-related variables
including H2O2 column abundance, H2O2 concentrations, and
HO2 concentrations at a 0.75° × 0.75° horizontal resolution
with a 3-hly temporal resolution.26 Additionally, we obtained
supporting meteorological data from ERA5 (ECMWF
Reanalysis v5) at matching spatial and temporal resolutions
of EAC4.27

We calculated the supply of H2O2 for SO2 oxidation through
chemical production and advection. The primary chemical
production rate, P, is that of HO2 self-reactions, which depend
on temperature, water vapor mixing ratios, and pressure:28

HO HO H O O2 2 2 2 2+ + (R1)

The net advection rate, C, is the average of H2O2
convergence rate within planetary boundary layer

C u( H O )2 2= · [ ] (1)

where u is the horizontal wind vector and [H2O2] is the H2O2
concentration. The change of H2O2 concentrations can be
written as

t
P C L L L

H O
SO c dep

2 2
2

[ ] = +
(2)

where LSO d2
is the loss of H2O2 by oxidation of SO2, Lc is the

loss of H2O2 by other chemical reactions such as photolysis
and reaction with OH, and Ldep is the loss by dry and wet
deposition. To diagnose the SO2 oxidation regime, our analysis
focuses on the H2O2 supply terms (P + C) rather than the
complete mass balance equation. These terms represent the
potential oxidant supply rate available for SO2 oxidation via
chemical production and horizontal transport. When compar-
ing to regional SO2 emissions, it is essential to use the oxidant
supply rate rather than oxidant concentrations.
2.2. Machine Learning Framework and Projections.

We developed an ensemble machine learning approach to
identify and quantify the factors controlling sulfate formation.
The ensemble incorporated four tree-based algorithms:
XGBoost,29 LightGBM,30 Random Forest,31 and LightGBM
with DART (Dropouts meet Multiple Additive Regression
Trees).32 Tree-based methods were selected for their superior
explainability properties, essential for mechanistic under-
standing and verification of sulfate formation driving factors.

The algorithms represent complementary ensemble strategies:
Random Forest reduces variance through bootstrap aggrega-
tion, XGBoost and LightGBM sequentially reduce bias through
boosting, and DART incorporates dropout techniques to
prevent overfitting while maintaining boosting advantages.
Each algorithm’s hyperparameters were systematically opti-
mized through grid search with cross-validation. The specific
parameter values are detailed in Supporting Information Table
S1 and the feature names are listed in Supporting Information
Table S2.
Gradient boost machine learning models can suffer from

degraded performance when including too many features,
particularly when some features introduce noise rather than
signal.33,34 Domain knowledge represents the most effective
feature selection technique for avoiding this issue.35,36 Our
selection prioritized variables directly relevant to the H2O2
oxidation pathway that dominates SO2-to-sulfate conversion in
our study region.18 Adding O3 and OH boundary-layer
columns to the machine learning models does not improve
summer sulfate prediction but degrades slightly winter
prediction performance. These two features also have the
lowest SHAP values (Supporting Information Figure S4),
demonstrating their limited explanatory power. For meteoro-
logical variables, we did not include surface wind speed, the
addition of which slightly degrades the model performance.
The individual models were integrated using a stack

regressor framework,37 which optimizes the combination of
base model predictions through a secondary learning process.
Stack regressor frameworks excel at capturing complex,
nonlinear relationships while reducing overfitting through
their hierarchical learning structure and diverse base
learners.38−40 An Elastic Net model41 was adopted as the
final regressor in the stacking framework, providing an optimal
balance between ridge and lasso regularization for the
ensemble predictions. The complete structure of this stacked
ensemble architecture is illustrated in Supporting Information
Figure S5.
Model performance was evaluated through k-fold cross-

validation to assess its stability and generalizability. The cross-
validation results (Supporting Information Figure S6)
demonstrate consistent performance across different data
subsets, indicating robust model stability. The model’s
predictive accuracy was further validated using an independent
test data set, with scatter plot analysis (Supporting Information
Figure S7), revealing strong correlation between predicted and
observed sulfate concentrations. Model training and validation
procedures are detailed in Supporting Information Text S1.
The model demonstrated consistent performance across both
winter (R2 = 0.86) and summer (R2 = 0.88) seasons
(Supporting Information Text S2). Model interpretability
was analyzed through SHapley Additive exPlanations (SHAP),
providing quantitative assessment of feature importance and
their interactions.42,43

Future projections were developed using a multicomponent
approach. First, power plant SO2 emissions were obtained from
Energy Information Administration Future sulfate emission
projection (Supporting Information Figure S8). For the
prediction of the future H2O2 supply rate (P+C in eq 2), we
employed a linear model trained with 2004−2023 H2O2
primary production rate and H2O2 column data. These
projections of both SO2 emissions and H2O2 supply rate
were combined with meteorological fields from the CMIP6
multimodel ensemble44 to drive our machine learning
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projections (Supporting Information Figure S9). Health
impacts were evaluated using the Global Exposure Mortality
Model (GEMM),45 incorporating gridded population data
(0.25° resolution) from the Gridded Population of the World
v4 data set.46

3. RESULTS AND DISCUSSION
3.1. Long-Term Trends in SO2 Emissions and Sulfate

Concentrations. Two-decade observations of SO2 and sulfate
concentrations (2004−2023) reveal distinct patterns in the
reduction of SO2 emissions and sulfate concentrations during
winter and summer. SO2 concentrations exhibited substantial
decreases in both seasons (84% in winter and 75% in summer)
(Figure 1(a)). These reductions are primarily attributed to the
transition from coal to natural gas in power generation6

(Supporting Information Figure S10). Similar trends have been
observed in previous studies, demonstrating substantial
decreases in SO2 levels following energy transitions in regions
such as Europe47,48 and China.49−51 These reductions are
primarily attributed to the transition from coal to natural gas in
power generation.6 The fuel transition trend was significantly
influenced by natural gas prices. Temporary disruptions were
observed in 2012 (due to low natural gas prices) and 2014
(due to natural gas price increases).47,52,53

However, the corresponding reductions in sulfate concen-
trations showed marked seasonal differences. Summer sulfate
concentrations decreased by 80%, tracking SO2 reductions of
75%, while winter reductions were limited to 65% considerably
lower than the reduction of 84% in SO2 concentrations (Figure
1(b)). The historic seasonal disparity in sulfate concentrations
has diminished over the study period. Previous studies, such as
Aas et al.,20 have documented disparities between SO2 and
sulfate reductions, suggesting that the seasonal variation in
atmospheric oxidation capacity influences sulfate formation.
Our findings extend these observations by showing that the
historical seasonal disparity in sulfate concentrations has
diminished, driven by changing chemical regimes.
Direct comparisons are presented in Supporting Information

Table S3. The reduction in wintertime SO2 levels from 2004 to
2013 was 67% ± 16%, which is significantly higher than the
reduction of 51% ± 13% from 2013 to 2023. However, the
corresponding decreases in sulfate concentrations are opposite.
While sulfate concentrations decreased by 40% ± 6% from
2004 to 2013, the reduction increased to 50% ± 6% from 2013
to 2023. In comparison, the summer reductions in SO2 and
sulfate levels are comparable. The lower wintertime sulfate
than SO2 reduction from 2004 to 2013 than other periods can
be understood by the changing sulfate-to-total-sulfur ratios

(Figure 1(c)). Summer ratios remained stable throughout the
study period, indicating consistent SO2-to-sulfate conversion
efficiency. In contrast, winter ratios exhibited two distinct
phases. During 2004−2013, winter conversion ratios increased
by ∼50% despite SO2 reductions, indicating a chemical
buffering effect. Post-2013, the ratios stabilized to a level
closer to the summer values, indicating a transition to more
direct correspondence between SO2 and sulfate reductions.
We selected 2013 as the transition year for two main

reasons. First, as shown in Figure 1, the sulfate-to-total-sulfur
ratio stabilized ∼0.2 beginning in 2013, indicating that SO2
oxidation was no longer constrained by oxidant availability.
Second, SO2 emissions from power plants remained relatively
steady between 2012 and 2014 (Supporting Information
Figure S8). A detailed discussion of this choice and associated
uncertainties is provided in Supporting Information Text S3.
3.2. Mechanistic Understanding of Seasonal Oxida-

tion Patterns. To elucidate the mechanisms driving these
seasonal patterns, we employed an ensemble machine learning
approach that reproduced observed sulfate concentrations (R2

= 0.88 and 0.86 for summer and winter averages, respectively;
test data set R2 = 0.87) (Supporting Information Figure S11).
Feature importance analysis (Supporting Information Figure
S12) revealed that power plant SO2 emissions and H2O2
availability (both column abundance and production rate)
were the primary factors controlling sulfate formation.
Supporting Information Figure S13 shows the factors

influencing sulfate concentrations across two consecutive
decades (2004−2013 and 2013−2023). SHAP analysis reveals
that powerplant SO2 emissions remained the predominant
driver of sulfate formation throughout the study period.
However, their relative importance increased substantially from
32% to 57% between the pre-2013 and post-2013 periods. The
corresponding contributions of oxidant availability metrics,
particularly H2O2 column density and H2O2 production rate,
decreased from 18% to 13% and 18% to 9%, respectively. This
temporal shift in controlling factors indicates a fundamental
change in the chemical regime governing wintertime sulfate
formation.
A detailed analysis of oxidant availability revealed

fundamentally different chemical regimes between seasons.
The winter oxidation dynamics showed a critical transition
around 2013, when decreasing SO2 emissions (from 6.5 × 108
to 3 × 107 kg/month) intersected with the relatively stable
H2O2 availability (approximately 2.5 × 108 kg/month). This
transition coincided with the stabilization of winter sulfate-to-
total-sulfur ratios (Figure 1), suggesting a shift from oxidant-
limited to SO2-limited conditions for SO2 oxidation. A similar

Figure 1. (a) SO2 concentrations for winter (blue) and summer (red) from 2004 to 2023. (b) and (c) Same as (a), but for sulfate concentrations
and the sulfate-to-sulfur fraction, respectively.
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pattern emerges when comparing column H2O2 to SO2
(Supporting Information Figure S14), although the interannual
variability (Supporting Information Figure S15) obscures the
exact timing of the transition. 2013 marked the first year since
2004 when column H2O2 exceeded column SO2 in winter. In
contrast, during summer, column H2O2 was more than four
times higher than column SO2. The oxidant availability first
exceeded SO2 emissions in the winter of 2011, earlier than
2013. This earlier timing is likely due to uncertainties in
model-simulated H2O2 production and transport. The sulfate-
to-total-sulfur diagnostic based on observations (Figure 1)
provides a more reliable indicator of the chemical regime
transition (Supporting Information Text S3).
During the pre-2013 period, wintertime sulfate production

was substantially constrained by limited H2O2 availability
(oxidant-limited regime). During the post-2013 period, as SO2
emissions declined below the oxidant supply, the system
transitioned toward an SO2-limited regime, evidenced by the
diminished importance of H2O2-related variables. This finding
explains the damping effect of wintertime sulfate reductions: a
low efficacy of SO2 emission reduction on reducing sulfate
concentrations, i.e., the reduction of sulfate lagged behind that
of SO2 emissions, when SO2 oxidation transitioned from the
oxidant-limited into SO2-limited regime. In contrast, the
summertime H2O2 production rates consistently exceeded
SO2 emission rates, with boundary layer H2O2 column
abundances more than four times higher than SO2 columns
(Figure 2). This oxidant-rich environment enables efficient
SO2-to-sulfate conversion, explaining the near-linear response
of summer sulfate concentrations to SO2 reductions.
The analysis result presented here is consistent with the

model simulations by Shah et al.54 showing the SO2 oxidation
was H2O2-limited in 2007. Shah et al. also simulated this
chemical damping effect that reduced the efficacy of SO2
emission reduction from 2007 to 2015. However, their
simulations appeared to suggest that this chemical damping
effect would extend from 2015 to 2023, which was not
supported by the observations. The detailed comparison
between this study and the previous work by Shah et al.54 is
described in Supporting Information Text S4.
3.3. Future Projections and Policy Implications.

Machine learning projections indicate continuing convergence
of winter and summer sulfate levels, suggesting that SO2
emission controls will achieve comparable efficacy across
seasons in the future (Supporting Information Figure S16).

This aligns with findings from other CMIP6-based studies,
such as Turnock et al.,55 which project global declines in
sulfate concentrations under scenarios with strong air quality
and climate mitigation measures. However, the rate of
improvement is expected to slow, reflecting the already
substantial reductions achieved in SO2 emissions. This
projected convergence reflects a consistent SO2 oxidation
regime in winter and summer in the future. Our projections are
broadly consistent with previous studies using chemical
transport models,56,57 which estimate a 3- to 4-fold decrease
in sulfate concentrations between 2000 and 2030 or 2050.
Similarly, our results align with sulfate trends projected under
the SSP2−4.5 scenario in CMIP6.58

Health impact assessments using the GEMM model project
declining mortality rates from sulfate exposure, with seasonal
differences in health impacts expected to diminish by 2045
(Supporting Information Figure S17). Our analysis provides an
explanation for the nonlinear relationship between SO2
emission reductions and resulting sulfate concentrations
through the chemical regime transition framework. This
nonlinearity in the SO2-to-sulfate conversion process ulti-
mately affects health outcomes, as previously noted by Burnett
et al.45 and Zhao et al.,59 who observed that emission
reductions do not translate to proportional improvements in
health impacts. The gradual elimination of seasonal disparities
in health impacts aligns with our mechanistic understanding of
the chemical regime transition and suggests that future air
quality management strategies may no longer need to consider
seasonal variations in control efficacy. These findings have
important implications for regions heavily reliant on coal
power generation, suggesting that initial emission control
efforts may face reduced efficacy due to similar chemical
buffering effects until oxidant-limited conditions are overcome.
The observations of SO2 and sulfate across the Rust Belt and

Southeast of the United States from 2004 to 2023 show two
distinct stages in the response of sulfate to SO2 reductions in
winter. In the initial stage prior to 2013, the reduction of
sulfate lagged significantly behind that of SO2 due to an
increasing conversion ratio of SO2 to sulfate. During this
period, the oxidation of SO2 to sulfate is limited by the oxidant
supply. Consequently, the fraction of sulfate out of total sulfur
increased as SO2 emission decreased. By 2013, the oxidant
supply reached the level of SO2 emissions and further SO2
reduction meant an oversupply of oxidants and therefore the
sulfur fraction stabilized after a ∼50% increase from the 2004

Figure 2. (a) H2O2 availability rate and SO2 emission rate during summer from 2004 to 2023. (b) Same as (a), but for winter. Light-colored lines
(light blue and light red) represent SO2 emission rates, while dark-colored lines (blue and red) indicate H2O2 availability rate. The calculation of
H2O2 availability is described in section 2.1.
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level. Post 2013, the reduction of sulfate in winter is
proportional to that of SO2, comparable to the summer
seasons from 2004 to 2023 when there is always an oversupply
of oxidants.
The substantially lower wintertime sulfate reduction relative

to that of SO2 from 2004 to 2013 than from 2013 to 2024 or
the 2004−2023 summer seasons reflects a chemical damping
effect due to the limited supply of oxidants. This mechanism
may delay the reduction in sulfate concentrations in other
polluted regions where the transition from coal to natural gas
in power plants or alternative energy sources has not
progressed as rapidly as in the United States. These findings
contribute to a more nuanced understanding of atmospheric
chemistry dynamics and may inform more effective emission
control policies, particularly in regions currently experiencing
high SO2 emissions where similar chemical damping effects
may initially limit control efficacy.
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