Geophysical Research Letters’

RESEARCH LETTER
10.1029/2025GL118737

Key Points:

e Spring Festival NOx reductions shifted
from suppressing to enhancing ozone
(2015-2024) despite similar emission
reduction patterns

e Cloud cover and solar radiation explain
85%-94% of ozone response
variability, while emission changes
have minimal influence

® Meteorological control over ozone
responses to emission reductions
underscores the challenges of
mitigation in a changing climate

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

Y. Wang,
yuhang.wang @eas.gatech.edu

Citation:

Zhao, F., Wang, Y., & Xi, S. (2025).
Meteorological control on ozone response
to NOx emission reduction events:
Evidence from the Spring Festival periods.
Geophysical Research Letters, 52,
€2025GL118737. https://doi.org/10.1029/
2025GL118737

Received 13 AUG 2025
Accepted 29 NOV 2025

Author Contributions:

Conceptualization: Fanghe Zhao,
Yuhang Wang

Data curation: Fanghe Zhao

Formal analysis: Fanghe Zhao
Funding acquisition: Yuhang Wang
Investigation: Fanghe Zhao
Methodology: Fanghe Zhao

Project administration: Yuhang Wang
Resources: Fanghe Zhao, Yuhang Wang
Software: Fanghe Zhao

Supervision: Yuhang Wang
Validation: Fanghe Zhao

Visualization: Fanghe Zhao

Writing — original draft: Fanghe Zhao
Writing — review & editing:

Fanghe Zhao, Yuhang Wang, Shengjun Xi

© 2025. The Author(s).

This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

'.) Check for updates

A n . l ADVANCING
nu EARTH AND

-~ SPACE SCIENCES

'

Meteorological Control on Ozone Response to NOx Emission
Reduction Events: Evidence From the Spring Festival
Periods
Fanghe Zhao'

, Yuhang Wang' ©, and Shengjun Xi'

lGeorgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, USA

Abstract China's Spring Festival, with consistent ~30% NO, (NO + NO,) reductions annually, provides a
natural experiment to investigate oxidant response to emission reductions. Unlike isolated events such as the
COVID-19 lockdown, the Spring Festivals offer a more robust decade-long (2015-2024) data set. Analysis of
these observations reveals a striking shift in oxidant (Ox = O3 + NO,) response from negative to positive values
over time despite similar emission reduction patterns each year. Chemical transport modeling indicates that
meteorological factors are the primary drivers of these variations. Machine learning analysis further identifies
cloud cover and radiation changes as controlling factors, with strong correlations between AOx and
meteorological parameters (R = 0.85-0.94) across all regions. These findings challenge conventional
assumptions about emission control effectiveness, showing that meteorological variability overrides expected
chemical responses. Our results indicate that emission reduction policies must adaptively account for
meteorological conditions to effectively mitigate ozone pollution in a changing climate.

Plain Language Summary During China's annual Spring Festival period, nationwide factory
shutdowns and traffic reductions create a natural experiment with ~30% drops in nitrogen oxide (NOx)
emissions. Our decade-long analysis (2015-2024) reveals a surprising reversal pattern: ozone responses to the
same NOx reductions have shifted from decreasing to increasing over time. Using numerical models and
machine learning, we discovered that weather conditions—particularly cloud cover and incoming solar
radiation—control ozone changes far more than emission changes themselves. When Spring Festival periods
coincide with clearer skies than surrounding weeks, increased solar radiation enhances ozone despite lower
NOXx; cloudier conditions suppress ozone under similar emission reduction conditions. Our results underscore
the need for adaptive ozone mitigation strategies that account for meteorological variability, not just emission
reduction targets—a critical insight as cities worldwide face growing challenges in controlling ozone pollution
amid a changing climate.

1. Introduction

Tropospheric ozone pollution represents a significant global challenge for both human health and ecosystem
function (Lu et al., 2018, 2020; Manisalidis et al., 2020). Understanding the complex formation mechanisms of
this secondary pollutant is crucial for developing effective control strategies. In recent decades, atmospheric
scientists have established that ozone forms through complex nonlinear photochemical reactions involving ni-
trogen oxides (NOx) and volatile organic compounds (VOCs) as primary precursors, modulated by photolysis
rates, water vapor, HONO chemistry, and aerosol interactions, yet the precise relationships governing these in-
teractions continue to challenge pollution control efforts worldwide (Liu & Shi, 2021; Ren et al., 2022; Tan
et al., 2018; Wang et al., 2019).

Natural experiments of large-scale emission reductions provide unique opportunities to investigate these chemical
relationships under real-world conditions. The Chinese Spring Festival (Lunar New Year) represents one such
experiment, characterized by nationwide industrial shutdowns and transportation reductions that typically result
in 30%-50% decreases in NOx emissions (Huang et al., 2012; Wu et al., 2022). These substantial but temporary
changes in emission patterns create an ideal laboratory for studying atmospheric oxidant responses to emission
reductions, particularly regarding ozone formation chemistry. The complex relationship between NOx reductions
and ozone formation poses challenges in megacities worldwide (Kleinman et al., 2002; Sicard et al., 2020), with
additional complexity in China from high aerosol loadings (K. Li et al., 2019; Sharma et al., 2020). As countries
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worldwide implement increasingly stringent emission control policies, understanding the meteorological factors
that modulate their effectiveness becomes critical for global air quality management (Cooper et al., 2020).

Previous studies examining ozone sensitivity during Spring Festival periods have reported varying findings
across different regions of China. Several researchers observed increased ozone concentrations despite NOx
reductions in most regions, leading to conclusions about VOC-limited chemical regimes (Dai et al., 2021; Shi
et al., 2021). However, growing evidence suggests significant meteorological influences on these observations.
Wang et al. (2020) identified substantial meteorology-induced biases in NO, profiles when examining human
activity changes based on satellite data from a single year, demonstrating that meteorological variability can
confound even the quantification of emission changes. Using Generalized Additive Models, Gong et al. (2018)
demonstrated that meteorological factors could explain 43%-90% of ozone variation. More recently, Shen
et al. (2024) found that during the COVID-19 lockdown, specific meteorological conditions—elevated tem-
peratures, low relative humidity, and stagnant winds under persistent high-pressure systems—critically modu-
lated ozone levels, often counteracting the benefits of reduced precursor emissions. Increased light availability
enhances photolysis rates, thereby increasing radical production and ozone formation from the same amount of
NOx and VOC precursors. This critical knowledge gap, the lack of systematic analysis of ozone response to
emission reductions (Wang et al., 2022), has prevented a comprehensive understanding of whether observed
changes primarily reflect emission-induced chemical regime characteristics or meteorological variations.

To address this knowledge gap, we examined the oxidant (Ox) response to NOx reductions during Spring Festival
periods across a decade-long timeframe (2015-2024). We focus on Ox rather than O; alone because Ox is
conserved with respect to the rapid recycling in the NOx family, allowing us to isolate actual photochemical
oxidant production changes from local titration effects (Lee et al., 2020; Souri et al., 2021; Wyche et al., 2021).
This is particularly important during emission reduction events when decreased NO emissions can increase O5
through reduced titration without representing genuine changes in photochemical oxidant production. Specif-
ically, we aim to: (a) quantify long-term variations in the Ox response to consistent NOx reductions during Spring
Festival periods; (b) determine the relative contributions of emission changes versus meteorological variations to
these observed variations, recognizing that meteorological conditions themselves modulate photochemical re-
gimes; and (c) identify the specific meteorological parameters most responsible for modulating oxidant responses.
Our findings highlight the dominant influence of meteorological factors, especially radiation variability due to
cloud cover, over potential emission-induced chemical regime change in shaping ozone responses to emission
reductions. Specifically, we demonstrate that meteorological variability can overwhelm emission-induced
chemical signals during emission reduction events, complicating the interpretation of such events solely in
terms of chemical regime characterization. These results provide crucial insights for developing more effective,
meteorologically informed air quality management strategies worldwide.

2. Materials and Methods
2.1. Data Sources and Processing

We obtained air quality observations from the China National Environmental Monitoring Center (CNEMC)
network (China National Environmental Monitoring Center Network, 2018; Kong et al., 2021), which comprises
1,702 monitoring stations distributed across China for the period 2015-2024. We accessed hourly measurements
of NO, and O; concentrations, which underwent strict quality control procedures to ensure data integrity. Our
analysis required that at least 75% hourly measurements are available for each defined period (pre-, during-, and
post-Spring Festival) to meet data completeness criteria, following completeness thresholds used in previous air
quality and environmental monitoring studies (Fontes et al., 2017; Li et al., 2013; Liu et al., 2022; Ma et al., 2011).
To account for the rapid photochemical cycling between NO, and O5, we calculated the Ox (O3 + NO,) con-
centration at each site (Wang et al., 2023). We categorized monitoring sites into four geographical regions:
Northwest (NW, 296 sites), Northeast (NE, 714 sites), Southwest (SW, 149 sites), and Southeast (SE, 480 sites),
with site distributions presented in Figure S1 of Supporting Information S1.

To evaluate differences between Spring Festival and non-Festival periods, we used the following formula:

1
AX = Xsf - E(Xpre + Xpost)
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where X, Xpr, and Xjoq denote values for 14-day periods during, before, and after the Spring Festival,
respectively. We define an oxidant response sensitivity as the ratio of Ox change to that of NO,, AAN—%’. Regional

ratio values were computed using the median values of individual sites to minimize the influence of extreme
values. O5 concentrations are represented by the maximum daily 8-hr average (MDAS) O5. NO, concentrations
are calculated as the daily daytime 8-hr average. Ox presented in this study is calculated as the sum of MDAS8 O;
and the daily daytime 8-hr average NO,.

We chose AOx/ANO, as our primary metric for several reasons. First, it can be calculated directly from routine
observational data (O3 and NO,) available from the nationwide monitoring network, enabling systematic analysis
across 1,702 sites over a decade without requiring model simulations or measurements of chemical species not
routinely monitored. Second, it provides a measure of overall odd-oxygen sensitivity to emission-induced NO,
perturbations since using Ox reduces variability associated with the fast NO-NO,-O; cycling driven by photolysis
of NO, to NO and the formation of NO, from the reaction of NO and O;. Third, our primary objective is to
demonstrate that meteorological variability, rather than emission changes or the resulting shifts in chemical re-
gimes, dominates observed oxidant responses during emission reduction events. For this purpose, using the
observation-based AOx/ANO, metric is advantageous, as it allows us to examine year-to-year variations without
introducing model uncertainties or non-routinely measured compounds in this observational-based analysis.

It is important to emphasize that we use AOx/ANO, primarily as an observational indicator to track temporal
variations in oxidant responses across years, rather than as a definitive diagnostic of chemical regimes. At the
same time, the observed AOx/ANQO, ratio remains valuable during periods of substantial emission reductions,
such as the Spring Festival or the COVID-19 lockdown, when NO, concentrations decline markedly. In such
cases, any increase in Ox necessarily yields a negative AOx/ANQO,. Quantifying the frequency and magnitude of
Ox increases relative to precursor reductions, whether driven by chemical-regime shifts or meteorological
changes, is therefore a critical component of our analysis. Furthermore, the mechanistic interpretation of these
variations is supported by our machine-learning analysis (Section 2.2) and chemical-transport model simulations
(Section 2.3), which explicitly represent photochemical, meteorological, emission, and deposition processes.

To quantify long-term trends in AOx and meteorological parameters, we employed the Theil-Sen estimator
(Theil, 1992), a robust non-parametric trend analysis method particularly suitable for environmental time series
data. This approach calculates the median of slopes between all pairs of points in the time series, providing
resistance to outliers and non-normal data distributions while maintaining reliability with up to ~30% outliers in
the data set (Rousseeuw, 1987).

We obtained meteorological variables from the ECMWF Reanalysis v5 (ERA5) data set (0.25° x 0.25° spatial
resolution; Hersbach et al., 2020). Key parameters included temperature, relative humidity, cloud cover fraction,
shortwave radiation, precipitation, wind speed, and boundary layer height. All meteorological variables were
spatially interpolated to air quality monitoring station locations using bilinear interpolation to ensure corre-
spondence between air quality and meteorological data (Kirkland, 2010).

2.2. Machine Learning Framework

We employed an XGBoost machine learning model (Chen & Guestrin, 2016) to analyze relationships between
meteorological factors and AOx across regions. We configured the model with 500 estimators and a maximum
depth of 6 to capture complex relationships while preventing overfitting based on the Bayesian search (Klein
et al., 2017). The model was trained on 70% of the data, with 15% allocated for validation and 15% for testing.
Model inputs included temperature, relative humidity, cloud cover fraction, shortwave radiation, precipitation,
wind speed, and boundary layer height for pre-, during-, and post-Festival periods. We optimized hyper-
parameters through exhaustive grid search to maximize predictive performance (Ahmad et al., 2022).

The evaluation of the machine learning model (Figure S2a in Supporting Information S1) demonstrates good
correlation on the evaluation data set (R = 0.78). The cross-validation on 10-fold separation (Lumumba
et al., 2024) of the training set (Figure S2b in Supporting Information S1) shows the stability of the model across
different training partitions. We employed permutation importance according to Spearman ranking correlation
(Nirmalraj et al., 2023) to validate that all selected features contribute meaningfully to model performance (Figure
S3 in Supporting Information S1). This analysis revealed that downward UV radiation at the surface was the most
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important predictor of AOx response. Model training and validation procedures are detailed in Text S1 of
Supporting Information S1.

To interpret the machine learning results, we employed Shapley Additive exPlanations (SHAP) analysis, a game
theory-based approach that quantifies each input feature's contribution to model predictions while maintaining
local accuracy and consistency properties (Chen et al., 2022; Lundberg & Lee, 2017; Scott & Lundberg, 2017).
For our tree-based XGBoost model, we utilized TreeExplainer to efficiently compute SHAP values for each
meteorological feature across all instances in our data set (Lundberg et al., 2020). This approach enabled
quantification of the marginal contribution of individual variables to AOx predictions while preserving the
complex, non-linear relationships captured by the model.

2.3. Regional Atmospheric Chemistry Transport Model

We employed the Regional chEmical and trAnsport Model (REAM) to simulate atmospheric chemical processes
and validate the meteorological influences identified through statistical analysis. This model has been extensively
validated in numerous atmospheric chemistry studies (Chong et al., 2024; Li et al., 2021; J. Li et al., 2019; Liu
et al., 2012; Qu et al., 2021; Yan et al., 2021). The model domain covered China with a horizontal resolution of
36 km X 36 km and 30 vertical layers. Meteorological fields were driven by WRF-ARW v4 (Weather Research
and Forecasting) model simulations constrained by ERAS5 data (Hersbach et al., 2020). Background anthropo-
genic emissions were based on the Multi-resolution Emission Inventory for China (MEIC) (Zheng et al., 2021).

To investigate whether the observed variations were driven by meteorology, we conducted simulations using
2017 MEIC emissions and the same Spring Festival emission adjustments with varying meteorological conditions
for 2015-2024. During the Spring Festival period, NOx emissions were reduced by 30%, followed by a 10%
reduction in the post-Festival period, while VOC emissions decreased by 10% during the festival, following
established protocols from previous studies (Dai et al., 2021). This experimental design effectively isolated the
impacts of meteorological variations on ozone formation and its sensitivity to NOx reductions, allowing us to
quantify the meteorological contribution to observed ozone changes during the 10 spring festival periods. For
comparison purposes, we also carried out sensitivity simulations for the Spring Festival periods using MEIC
emissions from 2015 to 2020 but with the same meteorology for 2017.

3. Results
3.1. Long-Term Variations of Oxidant Response Sensitivities

All AOx/ANO, values reported in this subsection are calculated from observed surface measurements from the
CNEMC monitoring network unless otherwise specified. For the purpose of illustration, we apply the Theil-Sen
estimator (Theil, 1992) to compute the trends of observed Ox to NOx emission reductions during the Spring
Festival periods. Analysis of oxidant response sensitivities (AOx/ANQO,) to changes in NO, concentrations
revealed interannual variability with overall declining patterns across China during 2015-2024. The observed
national AOx/ANO, ratio exhibited a marked decreasing trend (—0.16/yr), with a total reduction of 63% over the
decade (Figure S4 in Supporting Information S1). This ratio decreased from positive values to near zero, indi-
cating diminished oxidant sensitivity to NO, emission reductions, with particularly low values observed during
and after the COVID-19 pandemic period (2020 onward) when emission reductions were further intensified.

Regional analysis revealed distinct spatial patterns in oxidant response sensitivity across China. Three of the four
major regions (Northwest, Northeast, and Southeast) exhibited decreasing patterns in AOx/ANO,, while the
Southwest showed more variable patterns without a clear linear trend, though values in all regions generally
transitioned from predominantly positive in earlier years to near-zero or negative by 2024 (Figure 1 and Figure S5
in Supporting Information S1). Regional patterns show that the Southeast and Southwest regions exhibited more
variable AOx/ANO, values compared to Northwest and Northeast regions (Figure S5 in Supporting Informa-
tion S1), though the statistical significance of individual regional trends is limited (p > 0.05) due to substantial
interannual variability. Notably, the proportion of monitoring sites exhibiting positive AOx/ANO, values
decreased from 2015 to 2024 in the same order: 70% in Southwest, 40% in Southeast, 35% in Northwest, and 10%
in Northeast (Figure 1). Figure 1 shows the regional responses distribution of the fractions of sites with positive
versus negative AOx/ANO,, while Figure S5 in Supporting Information S1 presents the regional median mag-
nitudes, which can be skewed by ANO, values close to 0. For example, the median AOx/ANO, values for 2020
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Figure 1. Regional variations in oxidant response sensitivity to NO, reductions across China (2015-2024). Annual
percentage of monitoring sites with positive (red) and negative (blue) AOx/ANO, ratios in four major regions: (a) Northwest
China (NW), (b) Northeast China (NE), (c) Southwest China (SW), and (d) Southeast China (SE). The figure demonstrates
the shifting patterns in oxidant sensitivity to NO, reductions across different regions of China over the decade-long study
period.

and 2022 in the Northeast region are close to 0 and slightly negative and the 2022 values are more negative
(Figure S5 in Supporting Information S1). In comparison, the corresponding negative AOx/ANO, fractions are
slightly >50% but are essentially the same (Figure 1).

Provincial-level analysis indicated that approximately 92% of monitoring sites experienced decreasing
AOx/ANO, values over the study period (Figure S6 in Supporting Information S1), with the strongest de-
creases observed in southern regions. Importantly, NO, reductions during Spring Festival remained stable at
12%-20% across all regions throughout the decade, consistent with previous research (Dai et al., 2021; Javed
et al., 2021; Li et al., 2021). This stability suggests that the changing AOx/ANO, ratios primarily reflect
changes in AOx rather than variations in emission reduction patterns.

Further analysis of absolute AOx values further confirmed this interpretation, revealing significant increases from
large negative values to near-zero or small positive values across the study period. The national AOx exhibited an
increasing trend of 0.92 ppbV/yr (Figure S4 in Supporting Information S1). The Northwest region showed an
increasing AOx pattern of 0.97 ppbV/yr; the Northeast region increased at 0.52 ppbV/yr; the Southwest region
increased at 1.21 ppbV/yr; and the Southeast region increased at 1.18 ppbV/yr (Figure 2).

The analysis above provides a straightforward overview of oxidant response patterns during the Spring Festival
periods. However, it is important to note that the statistical significance of most linear trends, as indicated by their
p-values, is limited, with many values exceeding 0.05. Notably, the national AOx/ANO, ratio shows a significant
decreasing trend (p = 0.02), and the Northwest region exhibits a significant increasing trend in AOx (p < 0.01).
The remaining patterns have p-values ranging from 0.06 to 0.2, reflecting substantial interannual variability in
oxidant responses. To reduce the p-values, a considerably longer observation period is necessary.

To further assess the statistical significance of these changes, we grouped data from the first and last 5 years in
each region and performed #-tests to evaluate the differences between the two periods. The analysis revealed
significantly higher AOx levels in the last 5 years compared to the first 5 years across all four regions and total
China (p < 0.001; Figure S7 in Supporting Information S1. Given that the large variability in the AOx/ANO, ratio
could introduce analytical uncertainties, we examined the fraction of sites exhibiting positive AOx/ANO, ratios
as a more robust indicator for ratio changes. The analysis showed significant decreases in the positive AOx/ANO,
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Figure 2. Observed and modeled AOx variations during Spring Festival periods across China (2015-2024). Time series showing observed AOx values (black line),
model simulations with fixed emission reductions but varying meteorology (blue line), machine learning model predictions based on meteorological factors (yellow
line), model simulations with fixed 2017 meteorology but yearly varying emissions from 2015 to 2020 (pink dash line, limited to 2020 due to public emission inventory
availability) for: (a) Northwest, (b) Northeast, (c) Southwest, and (d) Southeast. Correlation coefficients between observations and predicted values are shown in the

legend.

site fraction between the two periods for all regions (p < 0.02) except Southwest China, where the p-value is
0.095; Figure S8 in Supporting Information S1). In the next section, we focus on the meteorological contributions
to the observed variations in oxidant responses.

3.2. Meteorological Control of Oxidant Response

To elucidate the mechanisms driving AOx changes, we compared observed variations with chemical transport
model simulations that used fixed emission reduction patterns but varied meteorological conditions. The model
reproduced the observed variations across all regions, with correlation coefficients of 0.74 in the Northeast, 0.78
in the Southwest, 0.61 in the Northwest, and 0.81 in the Southeast (Figure 2). This finding provides strong ev-
idence that meteorological variations, rather than changes in emission patterns or chemical regimes, primarily
drive the observed trends in oxidant response. Because the model explicitly simulates chemistry, transport,
emission, and deposition processes, the agreement between modeled and observed AOx variations demonstrates
that meteorological influences on these processes, not changes in emission characteristics, are the primary drivers
for the observed Ox variation patterns.

To further evaluate the effect of yearly emission changes on the observed oxidant response during Spring Festival
periods, we conducted model simulations using yearly MEIC emissions from 2015 to 2020 with the same Spring
Festival emission reduction pattern as in previous simulations. The same meteorological data for 2017 were used
in all simulations since the observed ozone responses in 2017 were about average for the period of 2015-2020
(Figure 2). Despite substantial changes in emissions from 2015 to 2020, the resulting AOx variations
remained minimal (Figure 2), demonstrating that yearly emission reductions cannot account for the magnitude or
temporal variations of observed oxidant changes during the Spring Festival periods. These findings indicate that
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Figure 3. SHAP analysis of meteorological factors influencing AOx across four regions of China. Bar plots showing the mean
absolute SHAP values for each meteorological predictor in the XGBoost model for: (a) Northwest, (b) Northeast,

(c) Southwest, and (d) Southeast. Higher SHAP values indicate greater influence on model predictions. Across all regions,
downward UV radiation consistently emerges as the dominant factor, followed by total cloud cover.

meteorological factors, rather than yearly emission changes, primarily drive the oxidant responses during Spring
Festival episodes. Additional details of the emission sensitivity simulations are provided in Text S2 of Supporting
Information S1.

Our chemical transport model simulations explicitly represent regional transport processes. The ability to
reproduce the observed AOx variations using fixed emission patterns but varying meteorology demonstrates that
meteorological influences on chemistry and transport are the primary drivers for the observed temporal vari-
ability. Emission-sensitivity simulations further show that substantial emission changes from 2015 to 2020, which
would alter regional transport patterns through changed concentration gradients, produce minimal AOX variations
under fixed meteorological conditions. These results indicate that meteorological modulation of photochemical
processes and transport, not emission-driven changes, explains the observed oxidant response patterns.

Our machine learning approach further isolated meteorological influences on AOX, reproducing variations with
correlation coefficients of 0.93 in the Northeast, 0.89 in the Southwest, 0.85 in the Northwest, and 0.94 in the
Southeast (Figure 2). These results confirm that meteorological factors can explain the majority of observed
variations in oxidant response to NO, reductions.

SHAP analysis identified radiation differences as the most important predictors of AOx across all regions
(Figure 3 and S3 in Supporting Information S1). In southern regions (Southeast and Southwest), downward UV
radiation emerged as the dominant factor, with more than twice the impact of the second most important factor,
while cloud cover ranked third in Southeast and fifth in Southwest. This finding suggests that AOx and atmo-
spheric ozone chemistry during Spring Festival periods in southern China are primarily modulated by radiation
changes. In northern China (Northwest and Northeast), both downward UV radiation and cloud cover ranked as
the top two predictors, while temperature also influenced AOx, though with less explanatory power than radiation
variables.
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Figure 4. Temporal variations of z-score standardized AOx and shortwave radiation differences across regions (2015-2024). Time series showing z-score standardized
AOx (black line) and z-score standardized A (Shortwave Radiation) (blue line) for the four regions. Correlation coefficients between the two variables are shown in the

legend for each region.

3.3. Correlation Between Meteorological Factors and Oxidant Response

Quantitative analysis of the relationships between normalized AOx and A Shortwave Radiation revealed strong
correlations across all regions, with correlation coefficients of 0.84 for the Northwest, 0.58 for the Northeast, 0.89
for the Southwest, and 0.93 for the Southeast (Figure 4). The z-score standardization enables direct visual
comparison of temporal patterns despite different variable units. These robust correlations confirm the critical
role of radiation processes in controlling oxidant response during emission reduction periods.

The correlation analysis identified cloud cover as a primary meteorological driver behind radiation changes, with
strong negative correlations between UV radiation differences and cloud cover across all regions (correlation
coefficient of —0.90 for the Northwest, —0.84 for the Northeast, —0.90 for the Southwest, and —0.95 for the
Southeast; Figure S9 in Supporting Information S1). In southern regions, UV radiation differences also strongly
correlated with precipitation and relative humidity differences, which are themselves associated with cloud
formation processes. These findings suggest that the observed interannual variations in AOx are attributable in
part to differences in cloud cover between Spring Festival and non-Festival periods, potentially influenced by
reduced firework usage during Spring Festival (Liu et al., 2024; Yao et al., 2019) and regional climate (Xue
et al., 2021; Zhang et al., 2024; Zhang & Wu, 2018).

The meteorological control documented above also explains regional differences in response magnitudes.
Southern regions exhibited stronger patterns (Section 3.1) due to tighter coupling between AOx and radiation
variability (R = 0.89-0.93 vs. 0.58-0.84 in the north, Figure 4) and greater UV radiation dominance (Figure 3).
These patterns reflect southern China's larger interannual variability in spring downward UV radiation and cloud
cover driven in part by higher moisture availability and warmer temperatures that amplify photochemical
sensitivity to radiation changes.

4. Conclusions

Emission control policies worldwide increasingly target NO, reduction to mitigate tropospheric ozone pollution,
yet the efficacy of these interventions remains uncertain due to complex atmospheric chemistry. China's Spring
Festival period each year, characterized by consistent NO, reductions at ~30%, serves as a natural experiment to
investigate atmospheric oxidant response to emission reductions. The recurring and widespread nature of these
emission reductions offers a larger and more robust data set than isolated long-duration events, such as the
COVID-19 lockdown.
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predominantly controlled by meteorological variations rather than changes in chemical regimes, with cloud
cover-driven radiation changes being an important controlling factor across all regions. These results highlight
that meteorological variability can mask or overwhelm emission-induced chemical regime signals during
emission reduction events, complicating the interpretation of such events for photochemical regime character-
ization (Sillman, 1999) and highlight the necessity of accounting for meteorological influences when assessing
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change can significantly alter regional meteorological patterns (Bolan et al., 2024; IPCC, 2023), the effectiveness
of NO, reduction strategies may decouple from emission characteristics. Future air quality management should
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on developing integrated climate-chemistry models to inform more resilient strategies in a changing climate.
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