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Abstract Fires play a critical role in modulating regional and global climate through disturbances on
meteorological, biogeochemical, and hydrological processes, while fires are strongly affected by climate,
terrestrial ecosystems, and human activities. The complex climate‐fire‐ecosystem interactions with
anthropogenic disturbance are not well understood. We developed a REgion‐Specific ecosystem feedback
Fire (RESFire) model in the Community Earth System Model (CESM) that provides modeling capability to
reproduce the observed burning patterns and trends and to understand fire related climatic processes.
Comparing with the default Community Land Model version 4.5 fire model in CESM, the RESFire model
includes heterogeneous natural and anthropogenic constraints on fire ignition and spread, improved fire
impact parameterization including online fire emissions and fire induced land cover changes, and modeling
bias corrections for online fire weather simulation. Evaluation results based on the International Land
Model Benchmarking package show significant improvements in fire simulation performance. The overall
modeling score of burned area simulation increases from 0.50 with Community Land Model version 4.5 to
0.62 (RESFire driven by the observation‐reanalysis data) and 0.60 (RESFire driven by the bias‐corrected
Community Atmosphere Model version 5 simulation). The attribution analysis of decadal burned area
trends suggests distinct contributions of natural and anthropogenic forcing in different regions, which are
consistent with previous observations. The model also includes a fire impact module for estimating
atmospheric responses to fire emissions as well as fire disturbances on ecosystems, land cover, and surface
radiation budget. These results demonstrate the latest progress of global firemodel development that enables
fully interactive climate‐fire‐ecosystem studies using CESM.

Plain Language Summary We improved the fire simulation capability in the Earth system
model to better understand the complex interactions among climate, fire, and ecosystems with
anthropogenic disturbance.

1. Introduction

Fires are a widespread phenomenon around the world and have a long history of interactions with climate,
ecosystems, and human society (Bowman et al., 2009). Global fire activities are strongly influenced by four
key factors: fuel availability, fire weather, ignition agents, and human activities (Flannigan et al., 2009), and
fires exert profound feedback to earth systems through direct energy fluxes and large amounts of greenhouse
gas (GHG) and aerosol emissions as well as disturbances on biogeochemical and hydrological cycles
(Bowman et al., 2009). These interactions occur at multiple spatial and temporal scales that increase the dif-
ficulty to model fires in climate models. At short term and regional scales, local weather changes modulate
burning frequency and intensity through lightning ignition and drought enhancement, while vegetation dis-
tributions determine fuel availability and combustibility. In a recent study, Veraverbeke et al. (2017) identi-
fied lightning as a major drive of large fires in North American boreal forests and found increasing trends of
lightning ignitions in the past four decades and future projections. In Africa, opposite burning trends over
southern and northern Africa were attributed to precipitation changes driven by the transition from El
Niño to La Niña over the study period (Andela & van der Werf, 2014). Such meteorological and hydrological
influences on fires were also found in other fire‐prone regions including Southeast Asia (Field et al., 2016)
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and South America (Chen et al., 2011). Meanwhile, fires concurrently impose feedback to both weather and
ecosystems by releasing large amounts of gaseous and particulate emissions as well as heat, perturbing atmo-
spheric chemical and thermodynamic processes and radiative forcing, and reshaping vegetation structure,
composition, and distributions (Heilman et al., 2014; Liu et al., 2014). For instance, fire aerosols could affect
clouds and precipitation in a nonlinear manner with initially suppressed but ultimately invigorated precipita-
tion due to high smoke loadings (Lu & Sokolik, 2013). Fires also reshape local ecosystems by inducing vegeta-
tion mortality and restoration (Brando et al., 2014; Keeley, 2009) and further disturb regional to global carbon
balance (Gatti et al., 2014). In fire seasons, large wildfires usually result in severe air pollution and pose a high
risk to public health and human society (Johnston et al., 2012; Knorr et al., 2017; Marlier et al., 2013).

At longer timescales and larger spatial scales, these fire‐climate interactions shift fire regimes in response to
changes in the climate system and ecosystems affecting biogeochemical cycles, land cover, and hydrological
cycles (Liu et al., 2014). Paleoclimate records indicated clear links between fire activities and abrupt climate
change in North America during the last glacial‐interglacial transition period (Marlon et al., 2009). Several
observational andmodeling studies also showed the occurrence of shifting fire regimes in many regions such
as increasing large wildfires over the western United States due to the changing climate in the past centuries
(Westerling et al., 2006; Yang et al., 2015). Besides climatic drivers, fires are also affected by human activities
in terms of fire ignition and suppression (Archibald et al., 2012; Bowman et al., 2011). A fire history study
suggested shifting driving force of the global fire regime from precipitation driven during the preindustrial
period to human driven after the Industrial Revolution, and then to a temperature‐driven global fire regime
in future projections (Pechony & Shindell, 2010). This finding was corroborated by several other studies
(Andela et al., 2017; Yang et al., 2014) that attributed the declining trend of global burned areas in the last
century to human activities such as agricultural expansion and intensification, especially in tropical savanna
regions. In return, fires not only contribute directly to the climate system by releasing large amounts of GHG
and carbonaceous aerosol emissions but also disturb the radiation budget by changing surface albedo via
aerosol deposition and postfire succession. Currently, several global fire emission data sets have been devel-
oped using different methods based on satellite retrievals (Ichoku & Ellison, 2014; Kaiser et al., 2012;
Randerson et al., 2012; van der Werf et al., 2010, 2017). Though the differences among these emission esti-
mations are large due to uncertainties in emission factors and the lack of satellite sensitivity to small fires
(Randerson et al., 2012), biomass burning is still considered as one of the largest sources contributing to glo-
bal warming over both short (20‐year) and long (100‐year) timescales for 1‐year pulse fire emissions (Myhre
et al., 2013). However, it is worth noting that this modeling result is based only on the radiative effects of
source‐specific GHGs and aerosol‐radiation interactions without considering fire‐climate‐ecosystem feed-
backs and aerosol‐cloud interactions. Biomass burning could be carbon neutral with fire‐induced CO2 emis-
sions being balanced by uptake from surviving and regenerating vegetation when climate and fire regimes
reach equilibrium at a long‐term scale (Bowman et al., 2009). It is also reported that the net effect of biomass
burning would change from increasing radiative forcing in the burning year to decreasing radiative forcing
over a long‐term (80‐year) fire cycle due to multidecadal increases of surface albedo as observed in boreal
forests (Randerson et al., 2006) and simulated in other biomes (Ward et al., 2012).

To understand these complex climate‐fire‐ecosystem interactions, multiple fire models have been developed
in the past few decades. The modeling complexity increases from simple statistical models with empirical
algorithms to advanced process‐based parameterizations coupled with terrestrial ecosystem models
(TEMs) and dynamic global vegetationmodels (DGVMs). Statistical models based on empirical relationships
between contemporary climate and fuel conditions and fire characteristics are developed to investigate cli-
matic drivers of fires (Chen et al., 2011) and to examine future fire projections (Yue et al., 2013). Process‐
based models are usually implemented in TEMs and DGVMs to explicitly simulate fire‐related processes
including ignition, spread, and impacts. Hantson et al. (2016) summarized global fire modeling development
history and reviewed the current status of multiple process‐based fire models in the Fire Model
Intercomparison Project that was initialized in 2014. One common problem with the current generation
of fire models discussed by Hantson et al. (2016) is the simply represented fire effects on ecosystem dynamics
and land use changes (Running, 2008). Current process‐based fire models share more similarity in fire
impact simulation than the other aspects given the simple treatment of fuel combustion, tree mortality,
and postfire regeneration. The MC‐FIRE model (Lenihan et al., 1998; Lenihan & Bachelet, 2015) and the
LPJ‐SPITFIRE model (Thonicke et al., 2010) have more explicit tree mortality simulation with
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consideration of fire intensity and residence time. The LPX‐Mv1model (Kelley et al., 2014), which simulates
resprouting after fires, is the only fire model in the Fire Model Intercomparison Project study with some
modeling capability to explicitly simulate fire‐triggered ecosystem regeneration processes. Though fire igni-
tion and spread are relatively better represented than fire impacts, the fire models have limited modeling
capacity to simulate diversified fire regime characteristics at regional scales (Hantson et al., 2016). Fire
models are unable to reproduce observed burned area trends in specific regions like African savannas that
are driven by both regional climate changes and demographic and socioeconomic impacts (Andela et al.,
2017; Andela & van der Werf, 2014). Such limitations are due in part to the use of homogenous fire parame-
terization at coarse spatial and temporal scales that do not account for regional differences of fire behavior
and characteristics (Rogers et al., 2015). Moreover, most fire models mainly consider one‐way perturbations
from weather to fires with incomplete feedback mechanisms from fires to weather and climate systems, and
fire assessment studies usually use fixed fire emissions without consideration of fire feedbacks (Ward et al.,
2012). The two‐way interactions between climate and fires are indispensable in fire‐related climate research
and fire impact assessments. These interactions occur from the flame front to larger scales need to be incor-
porated into climate models to capture the climate effects on fire regimes as well as fire feedbacks to the
atmosphere (Bowman et al., 2009). Terrestrial ecosystems would also change greatly with at least a doubling
of forests in the flammable savanna regions in the absence of fire impacts (Bond et al., 2005).

In this paper, we developed a REgion‐Specific ecosystem feedback fire (RESFire) model coupled in the land
model (the Community Land Model version 4.5 [CLM4.5]) and the atmosphere model (the Community
Atmosphere Model version 5 [CAM5]) of the Community Earth System Model (CESM) to extend the fire
modeling capability. RESFire is capable of simulating the interactions of fires with climate and ecosystems
within the framework of an earth system model. The major features in RESFire include (1) region‐ and
vegetation‐specific representation of natural forcing and demographic influences on fire occurrence and
spread; (2) online calculation of fire emissions of mass (tracer gases and aerosols) and energy (sensible
and latent heat) fluxes coupled between the land and atmosphere models; (3) incorporation of fire effects
on ecosystems such as vegetation mortality, regrowth, and associated land cover changes; and (4) atmo-
spheric model bias corrections to ensure the modeling performance consistency between online coupled cli-
mate simulations and offline simulations driven by atmospheric reanalysis and observation data. Given the
broad scope and content of the model development and evaluation processes, we mainly focused on fire
occurrence, spread, and impacts on terrestrial ecosystems in this paper. Although fire plume rise parameter-
ization is also a part of the RESFire development, it will be described in a subsequent paper (currently in pre-
paration) including modeling and parameterization details and evaluation. All the model variables used in
this work are listed in Table S1 in the supporting information.

2. RESFire Model Description and Simulation
2.1. The Community Earth System Model

CESM is a fully coupled global climate model maintained by the National Center for Atmospheric Research
(Hurrell et al., 2013). It is composed of five major components of the earth system including atmosphere,
land surface, ocean, sea ice, and land ice, plus one central coupler component. As the final release of the
CESM1 series, CESM version 1.2.2 has numerous new key features to improve modeling and prediction cap-
ability of the climate system. We developed the RESFire model in the CLM4.5 land model (Oleson et al.,
2013) of CESM version 1.2.2 that supports both a stand‐alone mode with only land model activated and a
two‐way coupled mode with dynamic land and atmosphere models. The spatial resolution we use is 0.9°
(lat) × 1.25° (lon) with a time step of 30 min. In this study, the stand‐alone CLM4.5 was driven by the com-
bination of atmosphere observations and reanalysis data from 1991 to 2010 provided by the Climatic
Research Unit and National Centers for Environmental Prediction (CRUNCEP; Viovy, 2013), while the
two‐way coupled CLM4.5 was driven by the CAM5 atmosphere model (Neale et al., 2012). RESFire was
coupled in CLM4.5 in both simulation modes and additional interfaces between CLM4.5 and CAM5 were
implemented for fire‐related mass and energy fluxes in the two‐way coupled mode. These newly incorpo-
rated fire modeling features are compatible with multiple major improvements in both CAM5 and
CLM4.5 such as a new 3‐mode modal aerosol scheme, a prognostic two‐moment cloud formulation, and a
revised photosynthesis scheme (Neale et al., 2012; Oleson et al., 2013), which help the simulation and
evaluation of fire‐atmosphere‐vegetation interactions such as fire aerosol radiative effects and carbon
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budget disturbance. Thereby, RESFire provides the state‐of‐the‐science simulation capability to examine
the physical, chemical, and biogeochemical processes through which fires interact with climate and
terrestrial ecosystems.

2.2. RESFire Model Framework

To account for climate‐fire interactive processes comprehensively, RESFire in CESM includes three major
components (Figure 1): fire occurrence estimation, fire spread optimization, and fire impact parameteriza-
tion (Li et al., 2012, 2013; Thonicke et al., 2010). We started from the maximum fire count estimation, which
was considered as the maximum fire occurrence potential triggered by both natural and anthropogenic igni-
tions. Then we added natural constraints on the maximum fire occurrence potential to estimate fire counts
with consideration of fire weather impacts. We further added anthropogenic constraints on fire counts to
generate final fire count estimation with complete natural and demographic influence. The final fire count
product in combination with fire spread parameterization was used for burned area estimation at the next
step. The maximum fire spread potential for a single fire spot in one grid cell was estimated by multiplying
maximum fire spread rates with an average fire duration time using an elliptical fire spread shape assump-
tion. This assumption was proposed by van Wagner (1969) and adopted by many process‐based fire models
(Albini, 1976; FCFDG, 1992; Li et al., 2012; Thonicke et al., 2010). We added natural and anthropogenic con-
straints sequentially on the maximum fire spread potential to optimize burned area estimation. The opti-
mized burned area estimation was used lastly in fire impact parameterization. In RESFire, fire impacts
consist of direct mass and energy fluxes that are exchanged between land surface and atmosphere as well
as fire disturbance on ecosystems such as fire induced tree mortality and associated recovery processes.
These ecosystem changes could further lead to indirect fire impacts on the climate system by perturbing
hydrological cycle, radiation budget due to surface albedo changes, and terrestrial ecosystem productivity.

To represent distinct fire characteristics for different vegetation types and regional climate and socioeco-
nomic conditions, we divided the global land areas into eight subregions (Table 1; Figure 2a) and included
the plant functional types (PFTs) into five major groups (Table 2; Figure 2b). It reflects a balance between
representing fire regime diversity and reducing model complexity. We assumed that the dependence of fires
on PFT types is much more homogeneous within a region than between different regions. The eight geogra-
phical regions were combined from the 14 Global Fire Emissions Database (GFED) subregions (Giglio et al.,
2010) to represent (1) the continuity of PFT distributions within a region and (2) different latitudinal and cli-
mate zones. We then developed region‐ and PFT‐specific fire parameterizations for biomes in these subre-
gions to improve the RESFire modeling capability. Such region‐ and PFT‐specific parameterizations were
applied in the three major RESFire components (Figure 1) to account for regional and biome diversities in
fire behavior, socioeconomic effects, and climate impacts.

Figure 1. A schematic diagram of the RESFire model development (please see Tables 3 and 4 for fire weather variable
description). RESFire = REgion‐Specific ecosystem feedback Fire; T10 = surface temperature; PREC10 = precipitation;
WF = soil moisture; RH = relative humidity; GDP = gross domestic production; SW = surface soil wetness;
FWET = fraction of wet canopy.
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2.3. Fire Occurrence

Fire can be triggered by either natural or anthropogenic ignitions. The

maximum fire ignition potential N0
clm (count per grid cell per time step)

in RESFire is given in equation (1),

N0
clm ¼ In þ Iað ÞAg; (1)

where In and Ia are the numbers of maximum fire ignition (count
per square kilometer per time step) triggered by natural and anthropo-
genic sources, respectively, and Ag is the grid cell area (square kilometer
per grid cell).

The natural fire ignition is a function of the cloud‐to‐ground fraction of
lightning flashes Il (flash per square kilometer per time step) and latitude
λ (°) (Li et al., 2012; Prentice & Mackerras, 1977),

In ¼ 1
5:16þ 2:16 cos 3λð Þ Il; (2)

and the anthropogenic fire ignition is a function of population density Dp (person per square kilometer;
Pechony & Shindell, 2009; Venevsky et al., 2002;),

Ia ¼ αDp6:8Dp
−0:6

n
; (3)

where α = 3.89 × 10−3 (count per person per month) is the number of potential ignition by a person per
month, and n is the number of time steps per month (time step per month).

The fire ignition potential N0
clm is considered as the maximum fire spot number estimation without any fire

weather influence. It does not take into account the diversity of fire related socioeconomic conditions or vari-
able fire management capability among different regions either. Therefore, we next conducted the
observation‐based regression analysis to incorporate both natural and anthropogenic constraint relation-
ships into the fire model.
2.3.1. Natural Constraints on Fire Occurrence
On top of the maximum fire ignition potential, we added region‐ and PFT‐specific natural and anthropo-
genic constraints sequentially to represent enhancement and suppression effects on fire activities on a regio-
nal basis. The natural constraint factors consist of three fire weather variables: surface temperature (T10, K),
precipitation (PREC10, mm/s), and soil moisture (WF, %; Table 3; Flannigan et al., 2009). The first two
meteorological variables were used by several drought indices to characterize the atmosphere and hydrolo-
gical drought conditions (Keyantash & Dracup, 2002). In our fire model, we considered these drought‐
related variables in a continuous time window (10‐day running mean) to better represent the probability

Table 1
Regions Used in the RESFire Model

Region Abbreviation Full name

R1 NTHA North America
R2 STHA South America
R3 EURA Eurasia excluding Middle East and South Asia
R4 MENA Middle East and North Africa
R5 NHAF Northern Hemisphere Africa
R6 SHAF Southern Hemisphere Africa
R7 SSEA South and Southeast Asia
R8 OCEA Oceania

Note. RESFire = REgion‐Specific ecosystem feedback Fire.

Figure 2. Geographical regions (a) and dominant plant functional type (PFT) groups (b) used by the region‐ and
PFT‐specific region‐specific ecosystem feedback fire model. Each Community Land Model grid has multiple PFT types at
subgrid level. Only dominant PFT types with the largest fractions are shown in (b). The acronyms of region and PFT are
listed in Tables 1 and 2, respectively.
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of fire occurrence as a consequence of cumulative effects in ambient envir-
onment and fuel conditions. The last hydrological variable was used by a
previous study (Li et al., 2012) to characterize fuel combustibility. For
training purposes in the regression analysis, we obtained monthly fire
weather data from the CRUNCEP observation‐reanalysis product. We
then used the observation‐reanalysis combined weather data and satellite
observed fire count data to train the regression model. Before building
models, we rescaled and interpolated most original training input data
such as the fire weather reanalysis data in Tables 3 and 4 to the same
scales of our modeling outputs, which are monthly‐based gridded results
at the 0.9° (lat) × 1.25° (lon) resolution. We then developed the constraint
regressionmodels between these inputs and outputs and implemented the

statistical relationships into our fire model. We did similar processing for bias corrections in section 2.6,
except that the training data changed to the daily‐based reanalysis and model data so that we had more sam-
ples for distribution mapping.

The omission of any fire weather impact or socioeconomic effect inN0
clm leads to large discrepancies between

the maximum fire ignition potential and observed fire counts. We then defined a common logarithm‐based
natural scaling factor NSn (unitless) for fire count estimation in equation (4),

NSn ¼ log10 Nmodis=N
0
clm

� �
; (4)

whereNmodis (count per grid cell per time step) is satellite observed fire counts that are interpolated from the
monthly Moderate Resolution Imaging Spectroradiometer (MODIS) climate modeling grid fire count pro-
duct (MYD14CMH) on board of the EOS‐Aqua platform (Giglio et al., 2006). It is noted that the original
MODIS climate modeling grid fire product is generated at a 0.5° spatial resolution from 1‐km pixel level
active fire products with cloud cover corrections. This MODIS product provides an approximate estimation
for actual fire numbers with an implicit assumption that every fire pixel is derived from an actual fire spot
and is independent from any other. Although the satellite data may be biased due to duplication or missing
count, no other data sets provide the temporospatial coverage of these data. As a result, this product was
widely used for fire count assessments in previous modeling studies (Li et al., 2012; Thonicke et al., 2010).
Hantson et al. (2013) discussed the strengths and weaknesses of using MODIS active fire products to char-
acterize global fire occurrence and found variable relations between MODIS fire spots and burned area in
space and time. Such complex relationships underline the necessity for region‐specific parameterization
in our work. We interpolated the MODIS data to the modeling grid and used 4 years of the monthly
MODIS data (2003–2006) to investigate the natural constraint relationship. We chose the 4 years from
2003 to 2006 since there were relatively small interannual variability in both major climate modes and global
fire activities. Therefore, we could focus on seasonal variations by using data of nonextreme years for model
training and test the modeling predictability of extreme years.

We examined the region‐specific relationship between NSn and fire
weather factors using multilinear ridge regression models for each subre-
gion (equation (5)),

NSi;jn ¼ ∑3
k¼1β

i;j
k ·Xk; (5)

where Xk is the three spatial and temporal variable fire weather factors in
Table 3 and βi;jk is the corresponding regression coefficient of the kth factor
associated with the ith PFT group in the jth subregion. NSi;jn is obtained by
filtering out gridded NSn in the jth subregion with the fraction of the ith
PFT group greater than 30% in the monthly observational data from
2003 to 2006. To separate the temporal and spatial variations in the rela-
tionship, we trained the regression models with spatially averaged and
temporal‐averaged data, respectively. Specifically, we first regionally aver-
aged the monthly fire weather factors Xk(x, y, t) and the corresponding
NSi;jn x; y; tð Þ in the jth subregion with gridded observational burned area

Table 2
PFT Groups Used in the RESFire Model

PFT groups Abbreviation Full name

— BLND Bare land
P1 NTREE Needleleaf tree
P2 BTREE Broadleaf tree
P3 SHRUB Shrub
P4 GRASS Grass
P5 CROP Crop

Note. RESFire = REgion‐Specific ecosystem feedback Fire; PFT = plant
functional type.

Table 3
Fire Weather Factors Used as Natural Constraints on Fire Occurrence

Fire weather factors Units Description

T10a K 10‐day running mean of 2‐m
temperature

PREC10a mm/s 10‐day running mean of total
precipitation

WFb % Soil water fraction for top
0.05‐m layers

Note. T10 = surface temperature; PREC10 = precipitation; WF = soil
moisture.
aMeteorological variables to depict drought conditions (Keyantash &
Dracup, 2002). bA hydrological variable to characterize fuel combust-
ibility (Li et al., 2012).
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as averaging weights. We used weighted averaging to highlight major
burning areas vulnerable to fires. Therefore, we generated monthly time

series of fire weather factors Xk tð Þ and natural scaling factors NS
i; j
n tð Þ for

each subregion and then estimated the regression coefficients β
i; j
k using

ridge regression for temporal variations. Similarly, we regressed annually

averaged fNS i;jn x; yð Þ on annual mean weather factors eXk x; yð Þ (all with
monthly burned area as averaging weights) and estimated the regression

coefficients eβ i; jk using ridge regression for spatial distributions. We applied

the average of β
i; j
k and eβi; jk in the RESFire model to capture the spatial and

temporal variability simultaneously and set the constant term βi; j0 as the

regional annual mean deviation between observed NSi; jn and simulateddNSi; jn (equation (6)),

dNSi; jn ¼ ∑3
k¼1

β
i; j
k þ eβi; jk� �

2
·Xk x; y; tð Þ þ βi; j0 : (6)

It is worth noting that we conducted variable selection first to reduce collinearity problems in the regression
model. If the correlation between two input variables exceeded a threshold, we removed one of them and
built the regression model with the rest of input variables. In this way, the coefficient estimates are more
robust with less erratic changes in response to variations in the modeling data. Furthermore, the ridge
regression method, which is a penalized regression method, has low sensitivity to collinearity and shows
great potential to reduce the negative impact of the collinearity problem in ecological studies (Dormann
et al., 2013). We set the threshold value at 0.7 as suggested by Dormann et al. (2013) for correlations among
the predictor variables. When two predictor variables showed |r| > 0.7, we excluded the variable that had less

correlation to the dependent variable (NSi;jn in equation (6)) in the regression model.

Figure 3 illustrates the temporal variability of fire occurrence in both observation and regression‐estimated
data for each region and PFT group. Since cropland fires are mostly controlled by agricultural activities with
strong anthropogenic influence on the seasonality and spatial distributions (Magi et al., 2012; Zeng et al.,
2008), we parameterized cropland fires separately by focusing on socioeconomic factors following previous
studies (Li et al., 2013). Therefore, we only applied natural and anthropogenic constraints to the PFT groups
1–4 (Table 2). Generally, most of regression‐estimated data reproduce the seasonality in the observational
data for different PFT groups in each region, which are reflected by relatively high correlation coefficients
between regression‐estimated and observed data on the top of each subplot (for instance, r = 0.97 for PFT
group 4 in region 5; Figure 3 [P4R5]). African regions (R5‐6) show the strongest burning seasonality for
all PFT groups, with peak fire seasons in cold and dry months in both Northern and Southern
Hemispheres of Africa. The temporal regression models capture well these seasonal changes by showing
good agreement of regression‐estimated data with the observations. The spatial variation models capture
the spatially heterogeneous burning distributions in a similar manner, though the spatial predictability
(Figure S1) is not as high as the temporal predictability due to larger spatial variability in fire occurrence.
2.3.2. Anthropogenic Constraints on Fire Occurrence
We defined a demographic scaling factor for fire count (ASn, unitless) in the same manner of NSn after
including natural constraints:

ASn ¼ log10 Nmodis=N
′

clm

� �
; (7)

whereN ′

clm is the intermediate fire count estimation (count per grid cell per time step) with consideration of
only natural constraints NCn (unitless):

N ′

clm ¼ N0
clm×NCn: (8)

The natural constraint NCn in the jth subregion is a weighted average of exponents of scaling factors NSn for
the ith PFT group with the weight of its fractional coverage f i (%):

Table 4
Fire Weather Factors Used as Natural Constraints on Fire Spread

Fire weather factors Units Description

TBOTa,b K Surface air temperature
RHa,b % Surface air relative humidity
SWb,c Unitless Surface soil wetness factor
FWETc % Fraction of wet canopy

Note. TBOT = surface air temperature; RH = relative humidity;
SW = surface soil wetness; FWET = fraction of wet canopy.
aMeteorological variables to control the short‐term moisture content of
fuels. bLi et al. (2012). cHydrological variables to characterize both
the short‐term and long‐term moisture content of fuels.
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NCn ¼ ∑n
i¼1 10NS

i; j
n ×f i

� �
: (9)

Given the large variations and uncertainties of the raw data, we followed the method of Li et al. (2013) and
resampled the data by averaging ASn in 50 consecutive bins of population density in the log scale and then
generated linear and nonlinear weighted fitting functions by setting sampling sizes as weights for the
resampled data in each bin. We obtained anthropogenic constraints for the four PFT groups in the eight sub-
regions based on these weighted fitting functions between population and anthropogenic scaling factors
(Figure 4). The anthropogenic constraint relationships vary among different PFT groups and regions. For
instance, Eurasia (R3) as the most populated region generally shows a strong human suppression effect
for most PFT groups because of effective early detection and prevention of fire danger. On the contrary,
South America (R2) demonstrates predominant enhancement effects for many PFT groups, especially in
less‐populated regions, which could be related to deforestation burning activities over these regions. In
North America (R1), the distinctions between prescribed burning in the Southeast United States and large
wildfires in the western United States lead to more complex nonlinear relationships with mixed suppression
and enhancement effects for many PFT groups.

We estimated anthropogenic constraints ACn (unitless) based on anthropogenic scaling factors and PFT
fractional coverages in the same manner as the natural constraints NCn,

ACn ¼ ∑n
i¼1 10AS

i; j
n ×f i

� �
; (10)

where ASi; jn ¼ f Dp
� �

is a weighted fitting function of population density as shown in Figure 4.

After taking into account both natural constraintsNCn and anthropogenic constraintsACn, we estimated the

final fire count estimation N f
clm (count per grid cell per time step) in equation (11):

N f
clm ¼ N ′

clm×ACn ¼ N0
clm×NCn×ACn: (11)

This final fire count estimation is the basis for burned area and fire impact parameterization in the
following sections.

Figure 3. Region‐ and plant functional type (PFT)‐specific (see Tables 1 and 2 for the full names of regions and PFT numbers shown on the top left corners) natural
constraints on the temporal variations of fire occurrences. The temporal correlation coefficients between observed and regression‐estimated data for each PFT
group and region are shown next to the subplot titles.
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2.4. Fire Spread

To simulate burned area in the fire model, we need to estimate fire spread in addition to fire occurrence. We

generated the maximum potential of gridded burned area fractions (BA0
clm, percent per time step) as a func-

tion of fire count (N f
clm , count per grid cell per time step) and maximum spread area fraction per fire spot

(Amax, percent per grid cell per count):

BA0
clm ¼ N f

clm×Amax : (12)

The maximum spread area per fire spot (Amax) was parameterized using the assumption of an elliptical
spreading shape (Albini, 1976; FCFDG, 1992; Li et al., 2012; Thonicke et al., 2010; van Wagner, 1969) and
passive suppression due to terrain impedance and landscape fragmentation (Pfeiffer et al., 2013).

Specifically, the elliptical fire spreading areaAellip
max is a function of PFT‐dependent maximum fire spread rates

(fsrmax, m/s), average fire duration time (τ, s), length‐to‐breath ratio (LB = 1.0 + 10.0[1 − exp (−0.06W)],
whereW is wind speed with the unit of m/s; LB is unitless), and head‐to‐back ratio of the theoretical elliptical

fire shape (HB ¼ LBþ LB2−1ð Þ0:5
LB− LB2−1ð Þ0:5, unitless) in equation (13) adopted from Li et al. (2012):

Aellip
max ¼

π× fsrmax×
0:1LB
1þ 1

HB

� �2

×τ2

4×LB×Ag
1þ 1

HB

� �2

×10−6: (13)

We set the average fire duration time (τ) to 24 hr following previous fire modeling studies (Arora & Boer,
2005; Kloster et al., 2010; Li et al., 2012). The passive fire suppression due to terrain impedance was adopted
from Pfeiffer et al. (2013), which represents the scarcity of larger fires in mountain regions. The terrain impe-
dance factor (slf, unitless) was determined in equation (14) as a piecewise function of median terrain slope
angle (γ, °), which limits the impedance effect only in grid cells with a median slope angle larger than 1.7°.
We calculated the grid median slope angle γ following the method by Zhang et al. (1999) method to aggre-
gate the maximum eight‐direction (D8) slope at 1‐arc minute resolution based on the ETOPO1 global digital
elevation model (Amante & Eakins, 2009) in equation (14):

Figure 4. Same as Figure 3 but for anthropogenic constraints on spatial variations of fire occurrence; the color saturation in each circle denotes the density of
sampled grid cells in each bin of population density. See detailed explanation in the main text.
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slf ¼
1 γ<1:7°

1
5
9
πγ−2

γ≥1:7° :

8>><>>: (14)

Similarly, we adopted the landscape fragmentation suppression factor (Afrag
max, percent per grid cell per count)

from Pfeiffer et al. (2013) in equation (15):

Afrag
max ¼ 1:003þ e 16:607−41:503f non−cropð Þ

� �−2:169
; (15)

which is approximated as a function of noncrop PFT fractions in grid cells (fnon − crop, percent per grid cell)
based on the Monte Carlo simulation results.

The fragmentation suppression factor is the average contiguous area fraction of natural PFT patches in each
grid cell, which sets the upper limit of burned area fraction of individual fire spots in equation (16):

Amax ¼ min Afrag
max ; slf×A

ellip
max

� �
: (16)

We then defined a logarithm‐based natural scaling factor for fire spread (NSa, unitless) based on the ratio of
the GFED burned area product and simulated maximum fractional burned area potential in equation (17):

NSa ¼ log10
BAGFED

BA0
clm

� �
; (17)

where BAGFED (percent per time step) is the satellite based GFED4.1s burned area estimation with contribu-
tions from small fires (Giglio et al., 2013; Randerson et al., 2012; van der Werf et al., 2017). We interpolated
the GFED4.1s burned area to the modeling grid and time step to evaluate the parameterization.
2.4.1. Natural Constraints on Fire Spread
In burning events, fire spread is constrained mostly by wind and fuel combustibility, the latter of which is a
function of moisture content of the fuel bed. Since we already accounted for the wind factor in the elliptical

fire spreading area Aellip
max

� �
, here we used surface air temperature (TBOT, K), relative humidity (RH, %), sur-

face soil wetness (SW, unitless), and the fraction of wet canopy (FWET, %) as surrogates to characterize fuel
combustibility (Table 4). The first two meteorological factors, TBOT and RH, affect the transfer of water
vapor into and out of fine fuel and the short‐term fuel moisture content. The last two hydrological factors,
SW and FWET, result from the accumulated effects of rainfall that modulate the fuel moisture content
and affect fire behavior at both short‐term (hourly) and long‐term (seasonal) timescales.

We applied natural constraints on fire spread calculation using the same equation (equation (5)) and para-
meterization processes of fire occurrence estimation. We conducted ridge regressions of NSa on the four fire
weather factors based on the 2003 to 2006 monthly observational data. Specifically, we first determined the
collinear input variables using the threshold of 0.7 for correlation coefficients among independent variables.
We then built two series of regression models for temporal and spatial variations of fire spread based on
regional averaged and annual averaged regression data, respectively. Figure 5 shows region‐ and PFT‐
specific temporal variations of natural scaling factors in both observed and regression data. African regions
(R5‐6) again have the strongest seasonal variability of fire spread among all PFT groups. The fire spread sea-
sonal variations in other biomes are less significant but nonnegligible, especially over the regions with strong
weather seasonality. It is noted that fire seasonality could be variable among different PFT groups in the
same region, such as the pronounced seasonal shift between peak fire months over the broadleaf forests
(P2R8) and the grasslands (P4R8) in Australia. These differences are attributed to different climatic zones
and fire regimes of the dominant biome. In Australia, broadleaf trees mostly grow in temperate zones of
southeast Australia with the four‐season pattern, while grass mostly grows in the tropical areas of northern
Australia with the wet and dry climatic pattern just like the Southern Hemisphere of Africa (R6). These
so‐called “bushfires” tend to be most common and severe during summer and autumn (December–
March) in forest areas because of higher temperatures and drought conditions that are conducive to fire
spread, while bushfires in tropical savannas usually occur during the dry season (April–October) when
the biomass is fully cured and ready to burn (Bradstock et al., 2012).
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Similar to fire occurrence, the regression parameterizations reproduce distinct seasonality characteristics of
fire spread in different biomes. Figure S2 shows the regression‐estimated results for spatial variations of
natural influences on fire spread, which are significant in biomes such Africa and Australia savannas.
Again, we estimated the natural constraint on burned area (NCa, unitless) as weighted averaging of natural
scaling factors NSa for each PFT group and region (equation (18)):

NCa ¼ ∑n
i¼1 10NS

i; j
a × f i

� �
: (18)

After adding natural constraints on both temporal and spatial variations of fire spread, we next implemented
anthropogenic impacts to finalize the fire spread parameterization.
2.4.2. Anthropogenic Constraints on Fire Spread
We defined a logarithm‐based demographic scaling factor for fire spread (ASa, unitless) to characterize
human impacts on burned area:

ASa ¼ log10
BAGFED

BA′

clm

 !
¼ log10

BAGFED

BA0
clm×NCa

� �
: (19)

We applied equation (19) to all regions and PFT groups including cropland areas, where agricultural activ-
ities determine burning seasonality and crop residuals as fuel supply. It is noted that we only considered
anthropogenic constraints on cropland fires and set NSa for cropland fires to zero. NSa for the other PFT fires
were described in the previous section. We estimated the anthropogenic scaling factor ASa in each biome by
separately fitting polynomial functions with gridded population density distribution (Figure 6) and gross
domestic production at country levels. Compared with anthropogenic constraints on fire ignition in
Figure 4, Eurasia (R3) again shows suppression effects with increasing population density, though such
effect is more significant in grasslands and cropland regions. South America (R2) has moderate fire enhance-
ment effects with increasing population density over rain forest regions (P2). Such enhancements can be
attributed to anthropogenic burning driven by deforestation and agriculture activities in this area. North
America (R1) still shows mixed effects with both enhancement and suppression effects in many forest
(P1/2) and cropland areas (P5), whichmight be related to the concurrence of prescribed burning and fire pre-
vention practices in these areas. More varying demographic effects can be found in savannas of Africa with
strong suppression effects in northern Africa (P4R5) and slightly enhancement effects in less‐populated

Figure 5. Same as Figure 3 but for fire spread.
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regions of southern Africa (P4R6). These relationships are consistent with an observation‐based study
(Andela et al., 2017) and will be discussed further in the following trend analysis.

With consideration of both natural and anthropogenic constraint effects, we estimated the final burned area

fraction (BAf
clm, percent per time step) using equation (20):

BAf
clm ¼ BA0

clm×NCa×ACa; (20)

where ACa (unitless) is the anthropogenic constrain on burned area as weighted averaging of ASa in
equation (21).

ACa ¼ ∑n
i¼1 10AS

i; j
a × f i

� �
(21)

2.5. Fire Impacts

We considered two types of fire impacts in the RESFire model: the short‐ and long‐term effects. The
short‐term effect includes fire‐related heat and mass release (flux rates) at hourly to weekly scales, and
the long‐term effect includes disturbances on ecosystems at much longer timescales such as postfire
changes in land cover and ecosystem structure over decades due to fire‐induced vegetation mortality
(Li et al., 2014).
2.5.1. Fire Mass and Heat Fluxes
We estimated fire carbon emissions (Ec

clm , g C·m−2·s−1) as a combination of carbon stocks (Ci, g C/m2),

burned area fractions (BAf
clm, percent per time step), a time unit conversion factor (Δt, second per time step),

and PFT‐specific combustion completeness (CCi, unitless):

Ec
clm ¼ ∑n

i¼1Ci×
BAf

clm

Δt
×CCi: (22)

By multiplying corresponding emission factors, we estimated fire emissions in equation (23) for 39 tracer

gases and aerosols (Ek
clm, g species per square meter per second) based on fire carbon emissions:

Figure 6. Same as Figure 4 but for the anthropogenic constraints on spatial variations of fire spread.

10.1029/2018MS001368Journal of Advances in Modeling Earth Systems

ZOU ET AL. 12



Ek
clm ¼ Ec

clm

cf c
×EFk; (23)

where cfc = 480 (g C per kilogram per dry matter) is a carbon to dry matter conversion factor, and EFk (g
species per kilogram per dry matter) is the kth species' emission factor (Akagi et al., 2011) used by the
GFED4.1s data.

We computed fire sensible heat flux as fire radiative power (FRP, W/m2). We inversed the conversion factor
cf e (kilogram per dry matter per megajoule) used by Kaiser et al. (2012) to convert fire carbon emissions to

sensible heat fluxes (ESH
clm, MW/m2):

ESH
clm ¼ Ec

clm

cf c×cf e
; (24)

where cf e are PFT‐specific conversion factors ranging from 0.13 to 1.55 kg per dry matter per megajoule for
nonpeat PFT groups (Table S2). The fire line intensity (flint, kW/m) was parameterized based on released
fire energy and fire line length of the ellipse fire shape,

flint ¼ ESH
clm

103×BAf
× fsrdw×Δt×

2×LB

LB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LB

2−1
p� �

× 3× LB þ 1ð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3×LB2 þ 10×LB þ 3

p� � ; (25)

where fsrdw is the fire spread rate (m/s) at downwind directions after considering natural constraints
(equation (26)).

fsrdw ¼ fsrmax×NCa×0:05×
2×LB

1þ 1
HB

(26)

The fire‐related moisture flux (EH2O
clm , g H2O·m

−2·s−1) was estimated based on stoichiometry by using equa-
tion (27) adopted from Jacobson (2014):

EH2O
clm ¼ Ec

clm×
MH2O

MCO2

×cf H2O; (27)

where cf H2O ¼ 0:83mol H2O
mol CO2

is the stoichiometry factor in the mass balance equation.

Finally, we obtained latent heat flux ( ELH
clm , W/m2) by multiplying moisture flux with latent heat

of evaporation (equation (28)):

ELH
clm ¼ EH2O

clm ×H×10−3 (28)

with =2.501 × 106 J/kg H2O.
2.5.2. Ecosystem Effects
We considered both partial‐ and whole‐plant mortality in the parameterization of fire related ecosystem
effects. The partial‐mortality parameterization is that of the default fire model in CLM (Li et al., 2012,
2013; hereafter indicated as LL2013) by transferring a part of unburned plant tissues (leaf, stem, root, etc.)
to the litter pool with fixed tissue‐mortality factors, while the whole‐plant mortality is parameterized bymul-
tiplying simulated FRP with observation‐based sensitivity relationships between plant mortality rates (MRs)
and FRP. Though plant traits like bark thickness and tree sizes can also influence fire‐induced tree mortality
(Brando et al., 2012), such detailed information is unavailable in the CLM model used in this study because
of its PFT‐based modeling structure. More sophisticated parameterization can be developed with the
“cohort”‐based version of the CLM Ecosystem Demography model (Fisher et al., 2015) in the future. We col-
lectedmultiple fire‐induced plantMRs from field measurements and satellite observations for different PFTs
(Table 5) and implemented the observation‐based sensitivity relationships between tree mortality and fire
intensity into the fire model. The whole‐plant MRs are region‐ and PFT‐dependent to reflect the nature of
variable heat endurance of plant species to fire scorching. The newly incorporated whole‐plant fire mortality
and associated land cover changes are essential in climate‐fire‐ecosystem feedbacks (Cochrane et al., 1999).
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Table 5 lists the fire‐induced whole‐plant annualized fractional MRs (%) for each PFT except grasses and
crops. Usually, grasslands can recover in a relatively short time period after burning due to reduced self‐
shading and competitive pressure (Zimmermann et al., 2010), and previous studies indicated positive feed-
back processes in the grass‐fire cycle over many transitional forest edge and savanna regions (Balch et al.,
2009; Bowman et al., 2014; Vila et al., 2001). For cropland, it is mainly constrained by agricultural practices
instead of natural ecological succession. Therefore, we assumed less fire‐induced perturbations in these two
PFT groups than the others. There is no fire‐induced land cover change for cropland in each grid cell, while
grassland fractions can only vary passively as a consequence of shrub/tree coverage changes. For shrubs, we
used the fixed whole‐plant mortality of 30% once fire line intensity exceeded a threshold value of 50 kW/m
based on the average of literature data (Epting & Verbyla, 2005; Medeiros & Miranda, 2008; Richards &
Lamont, 1996). For broad leaf trees, the fire‐induced whole‐plant mortality was estimated as a linear func-
tion of fire line intensity based on field measurements in Amazonian forests (Barlow et al., 2003; Brando
et al., 2012; Brando et al., 2014). For needleleaf trees in boreal regions, the fire‐induced tree mortality was
parameterized by region‐specific nonlinear functions of FRP based on satellite observed sensitivity relation-
ships (Rogers et al., 2015).

We illustrate the nonlinear sensitivity relationships between fire‐induced tree mortality and FRP over the
two boreal continental regions in Figure 7. Previous studies showed that boreal Eurasian forest fires are less
intense than that in North America (Wooster & Zhang, 2004) and different fire dynamics and plant traits
have significant impacts on tree survival in those regions (Rogers et al., 2015). These regional characteristics
of fire intensity and burn severity are evident in satellite measurements (Heward et al., 2013). Therefore, we
used satellite‐observed FRP and tree mortality data in postfire boreal forest regions and fitted a nonlinear
function for each biome based on the medians of statistically resampled data (Figure 7). By implementing
region‐specific sensitivity relationships, the RESFire model could capture these regional differences and
effects of fire disturbances on ecosystem structure and vegetation population. Considering that actual tree
mortality is not an instantaneous process, we added fire‐induced annual tree mortality fractions into a mor-
tality potential (MP) pool (%) and then withdrew a portion of it at a specific tree MR (fmr, %/s) for every mod-
eling time step (equation (29)),

dMP
dt

¼ ∑3
i¼1MRi×BAf

clm×f
i

Δt
−fmr ¼ ∑3

i¼1MRi×BAf
clm×f

i

Δt
−
MP
tsc

; (29)

whereΔt is seconds per time step and fmr is the instantaneous postfire vegetation MR estimated by the con-
temporary MP over a time constant (tsc) of total seconds per year.

The whole‐plant MP pool would almost run out during the following 2 to 3 years if there is no fire and no
new MP being added (equation (29)). For those fractional tree/shrub patches that were killed by fires, we
deducted the mortality fraction per grid cell from the original PFT fraction value and added the same
deducted fraction to grasslands if it exists in the same grid cell, or bare land if no grassland exists in the grid
cell. In this way, we can simulate simplified land cover change due to fire‐induced vegetation change in the
RESFire model. Such variable PFTs with updated ecosystem structures and optical properties would influ-
ence surface albedo in the land model and other PFT‐related functionality and further trigger a series of
radiation, biogeochemical, and hydrological feedbacks after fire occurrence.

Table 5
Fire‐Induced Annualized Fractional Whole‐Plant Mortality Rates for Each PFT Group

PFT Mortality Equations

Shrub Fixeda,b,c MR = 30 % , if flint ≥ 50 kW/m
Broadleaf tree f (flint)d MR = 0.000885 × flint, flint ≥ 0

Needleleaf tree f (FRP)e MR ¼ 0:0444× log10 FRPð Þ þ 0:64;FRP>0;North America

0:0783× log10 FRPð Þ þ 0:26;FRP>0;Eurasia

	
Note. PFT = plant functional type.
aEpting and Verbyla (2005). bMedeiros and Miranda (2008). cRichards and Lamont (1996). dBrando et al.
(2014). eRogers et al. (2015).
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Besides mortality, we also considered postfire recovery processes over burned regions. Previous studies sug-
gested that the postfire recovery is mostly a self‐replacement process in many burned regions (Epting &
Verbyla, 2005; Jin et al., 2012). We only considered stand‐replacing processes without interspecies competi-
tion during secondary succession and postfire recovery in our model. We collected and averaged the
PFT‐specific annual fractional recovery rates (RR, %) in Table 6 from several in situ and satellite‐based obser-
vations for secondary succession. Epting and Verbyla (2005) found that severe burning speeds up vegetation
recovery due to reduced competitive pressure in the postfire environment. To incorporate such a positive
feedback mechanism, we adjusted the instantaneous PFT recovery rate (frr, %/s) according to the contem-
porary tree mortality fraction (MF, %) as a surrogate of burning severity (equation (30)),

frr ¼ 10×MF×
RR
tsc

(30)

We applied these adjusted PFT‐specific recovery rates in combination with the estimated MR to allow
burned ecosystem to recover. Since we did not consider complete vegetation dynamics here, the gridded

PFT fractions could only decrease by fire‐induced vegetation mortality
and then restore back to default prefire levels after full recovery if there
is no more fire disturbance. The instantaneous changing rate in PFT frac-
tions (Δf, %/s) at the grid cell level is the difference between fire‐induced
whole‐plant MRs and postfire recovery rates (equation (31)),

Δf ¼ −
dMF
dt

¼ frr−fmr: (31)

2.6. Weather/Climate Model Output Distribution Mapping

The fire modeling performance depends strongly on the quality of fire
weather variables. When CAM5 was used to drive the fire model in a

Figure 7. Relationships between fire radiative power (FRP) and boreal tree mortality. (a) The spatial distribution of
correlation coefficients between satellite observed FRP and tree mortality; (b) raw gridded data (gray dots), statistical
samples (red boxes), and fitted sensitivity relationship (blue line) of FRP and treemortality over boreal Eurasia; (c) same as
(b) but over boreal North America.

Table 6
Postfire Annualized Recovery Rates for Each PFT Group

PFT Recovery rates

Shrub 10%a

Broadleaf tree (tropical regions) 5%b,c,d

Broadleaf tree (boreal regions) 8%e,f

Needleleaf tree 15%f,g,h

Note. PFT = plant functional type.
aRydgren et al. (2004). bChazdon (2003). cFinegan (1996).
dGuariguata and Ostertag (2001). eBeck and Goetz (2011). fEpting
and Verbyla (2005). gGoetz et al. (2006). hJin et al. (2012).
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two‐way coupled simulation mode, biased meteorological variables led to significant biases in burned area
estimates (to be shown in section 3.1) since all our fire model parameterizations were developed based on
the observation‐reanalysis atmospheric data. These model biases, especially precipitation‐related
hydrological biases, are common in the current generation of climate models (Ma et al., 2013; Wang et al.,
2014). To reduce negative impacts from atmospheric model biases, we introduced bias corrections in the
two‐way coupled mode on the basis of a statistical distribution mapping method (Piani et al., 2010;
Teutschbein & Seibert, 2012). In general, we first evaluated the online CAM5 modeling performance of
gridded fire weather variables (Tables 3 and 6) against the offline counterparts based on the CRUNCEP
data of the training period (2003–2006). For grids cells with significant modeling biases, we then obtained
the cumulative distribution function of offline daily values based on the observation‐reanalysis combined
data and online daily values from the CAM5 model. We fitted linear mapping functions based on the two
sets of distribution in each grid cell. Lastly, we used the mapping function to project the CAM5 fire
weather simulation onto the corresponding values at the same quantile in the reanalysis data (Figure 8).
In this way, we reduced climatological mean biases of the CAM5 model simulations while keeping
dynamic variability simulated by the model. We transformed precipitation data in a logarithm scale
before fitting mapping functions since precipitation intensity spectra usually follow the exponential
distribution (Piani et al., 2010).

Figure 8 demonstrates examples of online bias corrections for simulated surface temperature and precipita-
tion, in which we find significantly cool and wet biases over most African regions as well as biased drought
conditions over South American rain forest and savanna regions in CAM5 results (Figures 8a and 8b). The
cumulative distribution functions in Figures 8c and 8d show such bias tendencies across all quantiles of
CAM5 simulated surface temperature and 10‐day running mean precipitation in a selected grid cell of
South America. We then used mapping functions (Figures 8e and 8f) estimated by linear regressions based
on statistical distributions of model and reanalysis data (Piani et al., 2010; Teutschbein & Seibert, 2012) to
project the CAM5 simulations onto the reanalysis data at the same percentiles such that the online model
weather biases were reduced. In the next section, we designed multiple model simulation experiments
and further evaluated the effectiveness of weather bias corrections on fire simulation by comparing both
default and bias‐corrected fire model results with benchmarks.

Figure 8. Online fire weather biases and corrections using the distribution mapping method. (a) Spatial distributions of
online biases in surface temperature (unit: K); only biases at the 0.05 significance level are shown. (b) Same as (a) but
for 10‐day running mean precipitation biases (unit: 10−5 mm/s). (c) Cumulative distribution function (CDF) of daily
surface temperature in a sample grid cell from Climatic Research Unit and National Centers for Environmental Prediction
(CRUNCEP) and Community Atmosphere Model version 5 (CAM5); (d) same as (c) but for 10‐day running mean preci-
pitation in the same sample grid cell. (e) Samples of daily surface temperature in the sample grid cell from CRUNCEP
and CAM5 (circles) and the corresponding mapping function (green line); (f) same as (e) but for logarithmic 10‐day
running mean precipitation. PREC10 = precipitation.
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2.7. Model Simulation Sets and Evaluation Metrics

After model development and implementation, we conducted four sets of fire simulation experiments using
RESFire with both CRUNCEP data and CAM5‐simulated atmosphere forcing (Table 7). The first two sets
were stand‐alone land model simulation driven by the 1991–2010 CRUNCEP observation‐reanalysis com-
bined atmospheric data, which included global 6‐hourly surface temperature, wind speed, specific humidity,
air pressure, precipitation, and surface downward solar radiation (Viovy, 2013). We ran these two sets from
the same initial spin‐up condition to a steady state after several hundred years of land model simulation. The
other model input files such as the prescribed climatological cloud‐to‐ground lightning data, nitrogen and
aerosol deposition, and land cover data were also the same except the population density data. We used vari-
able population density from 1991 to 2010 in the first simulation set (RESFire_CRUNCEPa), and we fixed
population density at the 2,000‐year level in the second simulation set (RESFire_CRUNCEPb). Therefore,
the interannual variability of fire simulation in RESFire_CRUNCEPa was driven by both natural and
anthropogenic forcing, while it was driven by only natural forcing in RESFire_CRUNCEPb. By comparing
the difference between these two sets, we isolated the anthropogenic constraint effects simulated in the fire
model. The last two sets were two‐way coupled simulations with online CAM5 atmosphere model and
CLM4.5 land model. The first coupled simulation set (RESFire_CAM5a) was run for 10 years driven by bias
corrected fire weather from the CAM5 atmosphere simulation. The second coupled simulation set
(RESFire_CAM5b) did not include bias corrections. By comparing these two experiments, we evaluated
the effects of the online bias correction method. We ran both online coupled experiments for 10 years from
the same initial conditions of the stand‐alone experiments. All other model input data including population
density, GHG concentrations, and nitrogen and aerosol deposition rates were the same with
RESFire_CRUNCEPb. The cyclical 3‐hourly lightning data were interpolated from the NASA LIS/OTD grid
product v2.2 2‐hourly climatological lightning data with the cloud‐to‐ground lightning fractions calculated
based on Prentice and Mackerras (1977). The population density data were derived from the Gridded
Population of the World version 3 (CIESIN & CIAT, 2005). The land use and land cover change data were

Table 7
Modeling Settings of Fire Simulation Experiments

Name RESFire_CRUNCEPa RESFire_CRUNCEPb RESFire_CAM5a RESFire_CAM5b

Atmosphere forcing 1991–2010 CRUNCEP 1991–2010 CRUNCEP CAM5 with bias correction CAM5 without bias correction
Population density Variable from 1991 to 2010 Fixed in 2000 Fixed in 2000 Fixed in 2000
Lightning Climatology Climatology Climatology Climatology
Land cover Semistatic with fire

perturbation
Semistatic with fire
perturbation

Semistatic with fire
perturbation

Semistatic with fire
perturbation

Nitrogen and aerosol deposition Fixed in 2000 Fixed in 2000 Fixed in 2000 Fixed in 2000
Anthropogenic/biogenic emissions None None Fixed in 2000 Fixed in 2000
GHGs Constant Constant Constant Constant
SST/Sea ice None None Present‐day climatology Present‐day climatology

Note. RESFire = REgion‐Specific ecosystem feedback Fire; CRUNCEP = Climatic Research Unit and National Centers for Environmental Prediction;
CAM5 = Community Atmosphere Model version 5; SST = sea surface temperature.

Table 8
Fire Modeling Benchmark Metrics and References

Category Variable Data set Spatial/temporal resolution

Burned area GFED4.1sa,b (1997–2010) 0.25° × 0.25°; monthly
Intensity Emissions GFED4.1sa,b,c (1997–2010) 0.25° × 0.25°; monthly

FRP MODIS active fire productsd (2003–2010) 0.5° × 0.5° derived from MODIS products at
native 1‐km resolution; monthly

Impacts Plant mortality MODIS remote sensing productse (2001–2009) 0.25° × 0.25° derived from MODIS products at
native 250, 500, or 1 km resolution; annual

Ecosystem resilience In situ dataf (1850–2004) Canadian boreal forest sites; decadal

Note. GFED = Global Fire Emissions Database; FRP = fire radiative power; MODIS = Moderate Resolution Imaging Spectroradiometer.
aGiglio et al. (2013). bRanderson et al. (2012). cvan der Werf et al. (2017). dGiglio et al. (2006). eRogers et al. (2015). fGoulden et al. (2011).

10.1029/2018MS001368Journal of Advances in Modeling Earth Systems

ZOU ET AL. 17



Figure 9. Comparisons of spatial distributions and seasonal variations of burned area in the observations and simulations.
(a) GFED4.1s burned area fractions (%) averaged from 1997 to 2010; (b) seasonal variations of averaged GFED4.1s burned
areas (km2) in the eight subregions; (c, d) same as (a, b) but from RESFire_CRUNCEPa; (e, f) same as (a, b) but from
RESFire_CRUNCEPb; (g, h) same as (a, b) but from RESFire_CAM5a; (i, j) same as (a, b) but from RESFire_CAM5b. The
spatial correlation coefficients between simulated global burned area fractions and the GFED4.1s data are shown on the
bottom left corners of (c), (e), (g), and (i). RESFire = REgion‐Specific ecosystem feedback Fire; GFED = Global Fire
Emissions Database; CRUNCEP = Climatic Research Unit and National Centers for Environmental Prediction;
CAM5 = Community Atmosphere Model version 5.
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based on the 2,000‐year data from version 1 of the Land‐Use History A
product (Hurtt et al., 2006). The semistatic PFT types did not change for
each model grid cell except fire induced PFT (area) fraction variations
due to tree mortality and recovery in RESFire. The monthly nitrogen
and aerosol deposition data were taken from CESMv1.2 full chemistry
simulation results (Hurrell et al., 2013). We also used the anthropogenic
and biogenic emissions in 2000 (Lamarque et al., 2010) and prescribed
present‐day climatological sea surface temperature and sea ice data
(Hurrell et al., 2008) in the last two coupled experiments. All these model
inputs at different spatial and temporal resolutions were interpolated to
the modeling grids at the half‐hourly time step to drive the CLM land
model simulation. The stand‐alone model settings, especially the
RESFire_CRUNCEPa experiment, are similar with previous CLM4.5‐fire
simulation studies (Li et al., 2012, 2013, 2014).

We used the International Land Model Benchmarking (ILAMB) system
(Luo et al., 2012) to evaluate the RESFire modeling results of fire behavior
and impacts. The ILAMB system is an integrated land model benchmark-
ing system designed to improve the performance of land models and to
reduce key uncertainties in land surface processes. As one of the major
uncertainty sources in landmodels, fire simulation has considerable influ-
ences on the modeling of biogeochemical, biophysical, and hydrological
processes. We evaluated the RESFire results in the context of burned area,
fire emissions, and ecosystem effects to provide a comprehensive evalua-
tion of fire model performance. Table 8 lists the benchmark metrics and
their sources used for model evaluation.

3. RESFire Model Evaluation
3.1. Burned Area

We examined both spatial distributions and seasonal variations of global
and regional burned areas in stand‐alone and two‐way coupled modes in
Figure 9. The spatial correlation coefficients range from 0.69 to 0.75 on a
global basis in different fire simulation experiments, which are compar-
able with the LL2013 fire model performance (r = 0.71; Li et al., 2014).
We also compared the model simulations on a regional basis and listed
the regional spatial correlations between each experiment and GFED4s
data in Table S4. The stand‐alone modeling results driven by the
CRUNCEP atmosphere data (Figures 9c and 9e, RESFire_CRUNCEPa/b)
outperform the two‐way coupled modeling results driven by CAM5
meteorological inputs (Figure 9g, RESFire_CAM5a with bias corrections;
Figure 9i, RESFire_CAM5bwithout bias corrections). After bias corrections
in fire weather, the RESFire_CAM5a results show considerable burned

area bias reductions in all seasons over most regions, especially Africa and South America, comparing to the
RESFire_CAM5b results. For instance, the high bias in surface temperature and low bias in precipitation over
the central South America region result in an unrealistic drought environment in the default CAM5 simula-
tion, which leads to a high bias in burned area estimates. The bias correctionmodule in RESFire reduces biases
in CAM5 fire weather data and improves the fire modeling performance with reduced deviation from the
benchmark over this region. The seasonal variation estimates are also significantly better in stand‐alone
RESFire_CRUNCEPa/b (Figures 9d and 9f) and online bias‐corrected RESFire_CAM5a results (Figure 9h)
than default RESFire_CAM5b results (Figure 9j). Figure S3 shows comparisons of time series of annual burned
areas for each region in RESFire_CRUNCEPa and GFED4.1 s. The model results agree quite well with the
GFED data on a global basis, though discrepancies are significant in some regions like boreal north
America, central Asia, and southeast Asia. Those biases might result from insufficient natural and

Figure 10. Comparisons of decadal trends (%/year) in annual averaged
burned areas from 1991 to 2010. (a) Burned area trends driven by natural
and demographic forcing in RESFire_CRUNCEPa with changing weather
and population; (b) burned area trends driven by only natural forcing in
RESFire_CRUNCEPb with changing weather but fixed population; (c)
burned area trends driven by demographic changes. RESFire = REgion‐
Specific ecosystem feedback Fire; CRUNCEP = Climatic Research Unit and
National Centers for Environmental Prediction.
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anthropogenic triggers for specific fire types including large wildfires,
agricultural fires, and deforestation fires in these regions, which are a
limitation of the current model.

To illustrate the natural forcing and socioeconomic effects in RESFire, we
examined the decadal trends in global burned areas from
RESFire_CRUNCEPa and RESFire_CRUNCEPb and compared their dif-
ferences in Figure 10. It is noted that RESFire_CRUNCEPa includes both
interannually changing natural and anthropogenic impacts, while
RESFire_CRUNCEPb with fixed population density only includes the
varying fire weather influence. Figures 10a and 10b show similar patterns
of burned area trends during the 1991–2010 period, which implies natural
forcing as a dominant factor for decadal changes over most regions. We
found opposite trends between the Northern and Southern Hemispheric
Africa with decreasing and increasing burned areas over the past two dec-
ades, respectively. Such contrasting changes are consistent with previous
findings based on satellite observations. Andela and van der Werf (2014)
found similar downward and upward trends over Northern and
Southern Hemispheric Africa and attributed these changes to the shifted
precipitation patterns due to the phase change of the El Niño/Southern
Oscillation. They also concluded that the climate impact of precipitation
changes contributed most (51%) to the upward trend over Southern
Hemispheric Africa, while the impact of demographic and socioeconomic
changes (20%) were almost as important as the precipitation changes
(24%) over Northern Hemispheric Africa. Our modeling results corrobo-
rate these findings in the comparison of RESFire_CRUNCEPa and
RESFire_CRUNCEPb results. Figure 10c shows the difference of
RESFire_CRUNCEPa from RESFire_CRUNCEPb, which indicates the
demographic effect. In Northern Hemispheric Africa, the negative trend
in Figure 10c is almost comparable to the negative trend driven by only
natural forcing in Figure 10b, suggesting nearly equivalent contributions
from demographic (Figure 10c) and climate change (Figure 10b) factors
to the total trend in Figure 10a. In contrast, the much weaker positive
changes over Southern Hemispheric Africa in Figure 10c imply that the
regional increasing trend in Figure 10a is dominated by natural forcing
as shown in Figure 10b. In contrast, the fire trends by natural and

Table 9
ILAMB Evaluation Results for Burned Area Estimates Using GFED4s as the Benchmark

Metrics Units GFED4s
CLM45bgc
_CRUNCEP

RESFire
_CRUNCEPa

RESFire
_CRUNCEPb

RESFire
_CAM5a

RESFire
_CAM5b

Annual mean Mha/year 485.49 315.66 464.72 478.88 471.77 1033.62
Bias Mha/year — −169.84 −20.77 −6.61 −13.72 548.13
Relative bias 100% — −0.35 −0.04 −0.01 −0.03 1.13
RMSE Mha/month — 87.19 80.33 79.06 82.95 126.52
Phase months — 1.35 0.50 0.51 0.55 0.58
Global bias score — — 0.50 0.59 0.59 0.57 0.53
RMSE score — — 0.42 0.45 0.45 0.45 0.39
Phase score — — 0.75 0.82 0.82 0.82 0.82
Taylor score — — 0.36 0.85 0.82 0.78 0.56
Interannual score — — 0.55 0.56 0.56 0.55 0.52
Overall score — — 0.50 0.62 0.61 0.60 0.53

Note. ILAMB = International Land Model Benchmarking; GFED = Global Fire Emissions Database; RESFire = REgion‐Specific ecosystem feedback Fire;
CRUNCEP = Climatic Research Unit and National Centers for Environmental Prediction; CAM5 = Community Atmosphere Model version 5; RMSE = root
mean square error.

Figure 11. Comparisons of interannual fire carbon emissions. (a) Temporal
variations of annual fire carbon emissions from GFED4.1s and
RESFire_CRUNCEPa/b with the temporal correlation coefficients shown in
the parenthesis. The red dots denote the years of observations used for fire
model training. Statistical results from RESFire_CAM5a under the 2000‐
year climate conditions are shown in the box for comparison. (b) Regional
and global annual fire carbon emissions from GFED4.1s,
RESFire_CRUNCEPa, and RESFire_CAM5a. The 14 regions are the same
with the GFED data set (Giglio et al., 2010). BONA= Boreal North America;
TENA = Temperate North America; CEAM = Central America;
NHSA = Northern Hemisphere South America; SHSA = Southern
Hemisphere South America; EURO = Europe; MIDE = Middle East;
NHAF = Northern Hemisphere Africa; SHAF = Southern Hemisphere
Africa; BOAS = Boreal Asia; CEAS = Central Asia; SEAS = Southeast Asia;
EQAS = Equatorial Asia; AUST = Australia and New Zealand;
RESFire = REgion‐Specific ecosystem feedback Fire; GFED = Global Fire
Emissions Database; CRUNCEP = Climatic Research Unit and National
Centers for Environmental Prediction; CAM5 = Community Atmosphere
Model version 5.
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demographic forcings in South America and Southeast Asia have opposite
signs in most regions, and the former is more dominant. Over northern
Australia, on the other hand, fire suppression by the demographic factor
is most important (~75%). In general, population increases tend to sup-
press fires at the global scale, while natural forcing can either enhance
or suppress fires at regional scales, which agree with observation‐based
findings (Andela et al., 2017; Andela & van der Werf, 2014).

To provide a more quantitative understanding of modeling performance,
we applied the ILAMB system to evaluate the RESFire results with differ-
ent experiment settings and quantified burned area modeling scores using
multiple metrics, which include absolute and relative biases, seasonal
phase, interannual variability, RMSE, and Taylor score in Table 9 (see
the supporting information for details of evaluation metrics); the
GFED4s data set (2001–2010) was used as the benchmark. For compari-
son, we also listed the evaluation results of the default CLM LL2013 fire
scheme driven by the same data atmosphere forcing named as
CLM45bgc_CRUNCEP. It is noted that the default CLM LL2013 fire
model was calibrated using different atmospheric reanalysis data (Qian
et al., 2006) and an old version of the GFED data set (GFED3) as bench-
marks (Giglio et al., 2010; van der Werf et al., 2010), and the simulation
period was different from this work (1997–2004 in Li et al., 2014, vs.

1991–2010 here). Though Li and Lawrence (2017) recalibrated the LL2013 fire model in CLM recently,
the updated CLM‐fire model released with the new version of CESM was not available during the model
development period of this paper. Therefore, our CLM45bgc_CRUNCEP run is based on the same version
of LL2013 without recalibration and its burned area result (316 Mha/year) is very close to the published
one (322 Mha/year) in Li et al. (2014). This similarity suggests the correspondence of our
CLM45bgc_CRUNCEP simulations with the previous published ones (Li et al., 2013, 2014). As shown in
the table, the burned area simulations in the RESFire model in both stand‐alone and two‐way coupled
modes outperform the default fire scheme in most benchmarking metrics, such as absolute and relative
annual mean biases and phase variations. The smaller spatial and temporal biases and higher scores in
the RESFire results corroborate the previous comparisons in Figure 9. By comparing the evaluation results
between online modeling results with (RESFire_CAM5a) and without bias corrections (RESFire_CAM5b),
we also found significant improvements in all benchmarking metrics after implementing fire weather bias
corrections. In general, the overall modeling score as a weighted average of all metrics (see supporting infor-
mation for details) increases from 0.50 of CLM45bgc_CRUNCEP to 0.62/0.61 of RESFire_CRUNCEPa/b and
0.60/0.53 of RESFire_CAM5a/b, respectively. Such increases in modeling scores are robust if we change the
evaluation benchmark to the old GFED3 data set used for the LL2013 fire model development and calibra-
tion (see Table S3). These results illustrate the improved modeling capability of the RESFire model driven by
either offline reanalysis or online simulation data, which is crucial for both fire hindcast or future projection
studies. Considering sensitivity experiment objectives andmodel setting limitations of RESFire_CRUNCEPb
and RESFire_CAM5b, we mainly focused on the evaluation and comparison of the more comprehensive
RESFire_CRUNCEPa (with fully natural and anthropogenic forcing) and RESFire_CAM5a (with bias cor-
rection) data in the following sections to demonstrate the RESFire modeling capability.

3.2. Fire Emissions

We evaluated the interannual variability of fire carbon emissions and compared annual mean carbon emis-
sions with the GFED4.1 s data for each subregion (Figure 11). Similar to the burned area estimates, the simu-
lated fire carbon emissions also agree well with the benchmark data with temporal correlation coefficients of
0.80~0.83 in the RESFire_CRUNCEPa/b results driven by the reanalysis‐observation‐based atmosphere for-
cing. The fire model captures the two high fire years around 2000 and 2008 as shown in the GFED data, and
RESFire_CRUNCEPa (−24 Tg C/year2) with variable natural and anthropogenic forcing better reproduces
the downward trend in global averaged GFED fire emissions (−50 Tg C/year2) than RESFire_CRUNCEPb
(−18 Tg C/yr2) with fixed population and demographic effects. These differences are consistent with the

Table 10
Comparisons of Annual Averaged Fire Emissions with Standard Deviations
of Interannual Variability

Species (Tg/
year) GFED4s RESFire_CRUNCEPa RESFire_CAM5a

Carbon 2235 ± 346 2199 ± 186 2629 ± 106
CO2 7574 ± 1133 7518 ± 817 8421 ± 426
CO 365 ± 81 408 ± 61 446 ± 23
CH4 16 ± 6 21 ± 5 21 ± 1.2
NMHC 18 ± 2 25 ± 2 27 ± 1.2
H2 10 ± 1.9 11 ± 1.5 12 ± 0.6
NOx 15 ± 1.8 14 ± 1.2 16 ± 0.8
N2O 0.95 ± 0.15 0.78 ± 0.09 0.87 ± 0.04
PM2.5 37 ± 6 37 ± 4 40 ± 2
TPM 48 ± 8 54 ± 6 59 ± 3
TC 19 ± 3.7 19 ± 2.4 21 ± 0.9
OC 17 ± 3 17 ± 2 19 ± 0.9
BC 1.9 ± 0.3 2.5 ± 0.2 2.7 ± 0.1

Note. GFED = Global Fire Emissions Database; RESFire = REgion‐
Specific ecosystem feedback Fire; CRUNCEP = Climatic Research Unit
and National Centers for Environmental Prediction; CAM5 = Community
Atmosphere Model version 5.

10.1029/2018MS001368Journal of Advances in Modeling Earth Systems

ZOU ET AL. 21



trend comparison results in Figure 10. It is worth noting that we only
trained the RESFire model with the 4‐year data from 2003 to 2006, which
show less interannual variation than the other years. The successful
reconstruction of large variations in the other years demonstrated the
effectiveness of RESFire. Since the simulated atmosphere internal varia-
bility in CAM5 does not necessarily represent the interannual variability
of real atmosphere, we only examined the statistical properties of
RESFire two‐way coupled results with bias corrections
(RESFire_CAM5a). The 10‐year‐averaged RESFire_CAM5a carbon emis-
sions are larger than the GFED4.1 s and RESFire_CRUNCEPa by 18%
and 20%, respectively. High bias regions include temperate North
America, Northern Hemispheric South America, Europe, and Middle
East (Figure 11b). One consequence is that the tendency of underestimat-
ing fire‐induced aerosol loading (Ward et al., 2012) was not severe in the
online CAM5 simulation. The published LL2013 CLM4.5‐fire carbon
emission is 2.1 Pg C/year averaged from 1997 to 2004 (Li et al., 2014),
which is lower than our results here, but we should point out again that
such biases could result from different atmosphere forcing data and mod-
eling benchmarks used in LL2013.

In Table 10, we examined the averaged fire emissions (1997–2010) of spe-
cific trace gases and aerosol species. The default CLM45bgc_CRUNCEP
does not provide fire emissions for each species, so we only compared
complete forcing‐driven RESFire_CRUNCEPa and online bias‐corrected
RESFire_CAM5a results with the GFED4.1s data. Both modeling outputs
show good agreement with the benchmark data in most species. It is also
noted that RESFire_CAM5a results have lower interannual variability
than observations in GFED, which can be attributed to the fixed climate
forcing such as prescribed sea surface temperature, sea ice conditions,
and anthropogenic/biogenic emissions in the online coupled experiment.

We then compared spatial distributions of simulated FRP distributions
against satellite observations (MYD14CMH) onboard Aqua MODIS
(Giglio et al., 2006) in Figure 12. All data are annual averages from 2003
to 2010. The uncertainties in the conversion factors also contribute to
the discrepancies between the observations and simulation results. Both
stand‐alone RESFire_CRUNCEPa and two‐way couple RESFire_CAM5a
results have low biases in most regions except over Africa, where the
simulation results are overestimated to some extent. However, the uncer-
tainty in the fire FRP estimation is smaller than that in the sensitivity rela-
tionships between observed FRP and tree mortality (see Figure 7 for
example), which implies that the uncertainty from the latter source would
dominate the total uncertainty in tree mortality simulation. Therefore, we

suggest focusing on the FRP‐mortality sensitivity parameterization to further improve the model in the
future. We examined the fire‐related tree mortality and regrowth in the next section to demonstrate the
RESFire capability of modeling fire feedbacks to ecosystems.

3.3. Ecosystem Responses

Since the tree mortality‐induced albedo changes are most significant at high‐latitude regions with snow
cover (Jin et al., 2012; Randerson et al., 2006), we mainly compared the simulated tree mortality with the
satellite data over boreal regions. These regions also show considerable continental differences between
North America and Eurasia in fire dynamics as well as ecosystem and climate feedbacks (Rogers et al.,
2015). Similar to the satellite observations, the RESFire mortality results show higher MRs in North
America and lower MRs over Eurasia (Figure 13). Such differences result from different fire behavior and
plant traits. To be specific, North American fires are characterized by more crown fires with higher

Figure 12. Comparisons of observed and simulated FRP averaged from
2003 to 2010. (a) Annual average FRP (mW/m2) based on Aqua MODIS
observations; (b) and (c) are the same as (a) but based on
RESFire_CRUNCEPa and RESFire_CAM5a, respectively.
RESFire = REgion‐Specific ecosystem feedback Fire; CRUNCEP = Climatic
Research Unit and National Centers for Environmental Prediction;
FRP = fire radiative power; MODIS = Moderate Resolution Imaging
Spectroradiometer.
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Figure 13. Comparisons of fire induced fractional tree mortality rates (%) in satellite observations andmodel simulations.
(a) Annual averaged tree mortality rates based on satellite observations from 2001 to 2009; (b) annual averaged tree
mortality rates in fire seasons over the same period based on RESFire_CRUNCEPa; (c) same as (b) but based on the 10‐
year averaging results of RESFire_CAM5a under the 2000 climate conditions.

Figure 14. Simulated postfire temporal evolution of carbon budget and ecosystem productivity based on the idealized
burning experiment. (a) Total column carbon (g C/m2), coarse woody debris carbon (g C/m2), total litter carbon
(g C/m2), and total vegetation carbon (g C/m2); (b) net ecosystem production (g C·m−2·year−1); (c) net primary production
(g C·m−2·year−1) and gross primary production (g C·m−2·year−1); (d) total ecosystem respiration (g C·m−2·year−1),
heterotrophic respiration (g C·m−2·year−1), and autotrophic respiration (g C·m−2·year−1); (e) ecosystem carbon storage
efficiency (unitless) and plant production efficiency (unitless). The time of fire disturbance is at year 0.
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intensity and severity, while Eurasian fires are dominated by surface fires with lower intensity and severity
(Rogers et al., 2015). The tree species with high resistance to fire burning are also predominant in Eurasia.
Both factors lead to the different tree MRs in response to fires. The model therefore captures the contrast
of tree MRs between the two regions, though the model underestimates the MRs in Alaska and Siberia
due to the low biases in burned area and FRP estimates. Such low biases are due to underestimated
natural and anthropogenic fire triggers in the model with low lightning frequency and population density
over these regions. While the current implementation of tree mortality will require further improvement,
we note that if only partial vegetation mortality was included, the model simulated recovery rates would
be too high since the reduction of leaf area index would enhance light use efficiency of photosynthesis.
Including the whole‐plant mortality provides longer and more realistic regrowth time estimates.

To evaluate temporal variability of postfire ecosystem recovery, we followed previous studies (Kelley
et al., 2014) and designed an idealized burning scenario by introducing single‐year burning events in fire
peak months of each typical fire‐prone region. Figure 14 shows the simulated fire disturbance and postfire
evolution of carbon stocks and ecosystem productivity in the context of production, respiration, and effi-
ciency in a sample grid cell of Canadian boreal forest region (Manitoba: 261°E, 56°N). We chose this site
to compare modeling results with theoretical trends as well as in situ and satellite observations in pre-
vious studies (Goulden et al., 2011; Hicke et al., 2003). The dominant boreal tree species of Manitoba
are black spruce, jack pine, and trembling aspen, while vegetation varies with stand age and soil drainage
(Bond‐Lamberty et al., 2002). Goulden et al. (2011) examined the temporal variations of boreal forest pro-
duction and respiration during secondary succession after stand‐replacing crown fires. They compared the
stand observations with theoretical trends and concluded the transition of postfire forest stands from car-
bon source to sink within 11–12 years. Hicke et al. (2003) assessed the impact of fires on NPP in the
North American boreal forest using satellite observations and estimated a similar mean NPP recovery per-
iod of about 9 years. The model simulation shows that the total vegetation carbon (TOTVEGC, g C/m2)
decreased substantially after fire disturbances because of the implemented plant mortality and fire carbon
emission losses. In contrast, the coarse woody debris carbon (CWDC, g C/m2) was estimated to increase
as a result of plant mortality. With more loss of productive vegetation, the simulated photosynthesis cap-
ability of the ecosystem decreased considerably, leading to significantly lower gross primary production
(GPP, g C·m−2·year−1) and net ecosystem production (NEP, g C·m−2·year−1). However, the net primary

Table 11
Comparisons Between the RESFire and LL2013 Fire Models

Fire model The LL2013 fire modela RESFire

Occurrence Ignition Climatological lightning and anthropogenic triggers Climatological lightning and anthropogenic triggers
Flammability A global function of fuel load, RH, and soil wetness Region‐ and PFT‐specific functions of fuel load, T10,

PREC10, and soil water
Suppression Functions of population density and GDP Region‐ and PFT‐specific functions of population

density and a global unified function of GDP
Spread Spread rate A function of wind speed and fuel wetness Functions of wind speed and fuel wetness

Duration Fixed (1 day) Fixed (1 day)
Combustibility A function of root zone soil wetness and RH Region‐ and PFT‐specific functions of T, RH, SW,

and FWET
Suppression Functions of population and GDP Region‐ and PFT‐specific functions of population

and global unified function of GDP as well as
passive constraints from terrain and landscape
fragmentation

Impact Emissions Carbon emissions at surface Carbon, trace gas and aerosol emissions with plume
rise estimation and land‐atmosphere coupling

Ecosystem disturbance Partial vegetation mortality with fixed mortality
rates for each part (leaf, stem, root, etc.)

Partial vegetation mortality and fire intensity
sensitive whole‐plant mortality, PFT dependent
recovery, and fire induced land cover changes

Radiation budget None Sensible and latent heat fluxes

Note. RESFire = REgion‐Specific ecosystem feedback Fire; PFT = plant functional type; PREC10 = precipitation; T10 = surface temperature; RH = relative
humidity; GDP = gross domestic production; SW = surface soil wetness; FWET = fraction of wet canopy.
aLi et al. (2012, 2013).
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production (NPP, g C·m−2·year−1) changes were less significant than GPP due to reduced ecosystem com-
petition and respiration consumption after the simulated fire incident with large fractions of whole‐plant
mortality in the model grid cell. Given the estimates of similar reductions in both GPP and autotrophic
respiration (AR, g C·m−2·year−1), simulated NPP only had minor changes, which led to enhanced produc-
tion efficiency in NPP/GPP (unitless). The simulated rates of above changes decreased with time after the
fire disturbance and the ecosystem properties were restored to the prefire condition around two decades
later except TOTVEGC. This is because the vegetation carbon accumulated slowly and required more
years to fully restore to the prefire level. The simulated postfire ecosystem evolution had similar variations
in other regions, though the recovery rates are different for other PFT groups (see Figure S4). In general,
the mean recovery periods of postfire forest are about 3–18 years with a transition from carbon source to
sink in different PFT regions. These simulations in the idealized experiment are consistent with both the-
oretical trends and observed variations in previous studies (Goulden et al., 2011; Hicke et al., 2003), sug-
gesting good modeling performance in ecosystem responses to fires.

4. Conclusions and Future Directions

We developed a RESFire model that explicitly considers regional differences in fire behavior and impacts.
We refined the fire occurrence and spread parameterizations and added online fire weather bias corrections
as well as ecosystem effects in the model. The ILAMB benchmarking results of the RESFire simulations
show significant improvements of burned area estimates in both the stand‐alone mode driven by offline
CRUNCEP atmosphere data and two‐way coupled mode driven by online CAM5 atmosphere simulations.
The overall fire modeling score increases from 0.50 of the default CLM LL2013 fire scheme to 0.61–0.62 of
RESFire_CRUNCEP and 0.53–0.60 of RESFire_CAM5with improved spatial distributions and temporal var-
iations of fire activities. We applied the RESFire model with observation‐ and reanalysis‐based data to under-
stand the global fire trends from 1991 to 2010. In general, population increases tend to suppress fires at the
global scale while natural forcing can either enhance or suppress fires at regional scales. The estimated
demographic fire suppression effects are most prominent in Northern Hemispheric Africa (~59%) and north-
ern Australia (~75%). The fire impact evaluation results also demonstrate good modeling capability in simu-
lation of fire emissions and energy fluxes. Themean annual fire carbon emissions of RESFire agree well with
the latest GFED4.1s data within 18% in both stand‐alone and two‐way coupled modes. Fire emissions for
gaseous and aerosol species as well as heat fluxes show generally good agreement with benchmarking data.
With the implementation of whole‐plant mortality and ecosystem recovery, the simulation of fire effects on
ecosystems and land cover captures multiple long‐term post‐fire impacts such as increasing surface albedos
in boreal forests with decreasing radiative forcing (Randerson et al., 2006; see Figure S5). The simulated
spring albedo changes agree better with satellite observations in Eurasia than North America, which is
mainly attributed to low biases of burn area and fire severity simulation in boreal forests of North
America. We summarized the comparison between the RESFire model in this work and the default CLM
LL2013 fire model in Table 11. These advanced modeling features with fully interactive climate‐fire‐
ecosystem feedbacks are essential to understand the role of fires in climate and ecosystem changes.

A fully interactive fire‐climate model such as RESFire is ultimately constrained by the formulation of the
land surface model (the CLM in CESM). The PFT‐based landmodel structure of the CLM4.5 is a major limit-
ing factor in the RESFire development to represent complex fire dynamics and fire impacts in a global cli-
mate model. CLM4.5 prescribes only one single average of each PFT. It is therefore impossible to
distinguish different plant traits such as vegetation species, bark thickness, and stem diameters in the same
PFT, which are essential to simulate plant survival and regrowth after fires. The current RESFire implemen-
tation can be greatly refined when dynamic global vegetation modeling is implemented in the land model of
the CESM. We note that the newly released CESM2 model included an optional cohort‐based Functionally‐
Assembled Terrestrial Ecosystem Simulator of vegetation competition and coexistence with its CLM5 land
component, which could be used in the future to improve the RESFire model. The fire weather bias correc-
tion applied in this study is most appropriate for the current atmosphere. When it is applied to a future pro-
jection, an implicit assumption is that the biases in future projections are similar to the present. While it is
imperfect, we think that the large biases in fire estimates without making such corrections of the present
atmosphere suggest that it is necessary. We note that the fire model does not include such corrections; that
is, the fire model is calibrated using the present atmosphere data directly, essentially making the same
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assumption when it is applied in climate projections (or historic hindcasts at preindustrial times). An alter-
native approach is to use simulated atmosphere data to tune the fire model in the online coupled mode in the
same manner of using reanalysis and observation‐based atmosphere data. However, such tuning method
would result in different versions of fire models tied to specific atmosphere forcing data, which increases
the model complexity and reduces its universality. Though the current fire weather bias corrections may
need “remapping” of atmospheric modeling data if major changes or updates occur in atmosphere models,
it does not necessarily require corresponding changes in the fire model itself. We suggest that future fire
model development consider the following issues:

(1) Large uncertainties in fuel load and emission factors undermine the accuracy of fire emission products.
Figure S6 compares the CLM fuel load simulation to 176 in situmeasurements worldwide (van Leeuwen
et al., 2014). The comparison results reveal generally well‐simulated biomass fuel, although some discre-
pancies are still significant in regions such as western North America. Reducing fuel load biases and
emission factor uncertainties will better complement the improved burned area simulation in the fire
model.

(2) More detailed burning process parameterization is needed to simulate different fire combustion stages.
It is known that flaming and smoldering are two burning stages that have very different emission char-
acteristics. Treatment of burning states will improve the model simulation of fire gaseous and particu-
late emissions and their effects on weather and climate.

(3) Fire impact parameterization for fire‐induced plant mortality and regrowth can be improved by includ-
ing multiple plant traits such as tree species, stem size, and bark thickness. The detailed vegetation
demographic information under the PFT‐based modeling structure would further improve the model-
ing capability of regional differences in fire disturbance and ecosystem responses. Approaches such as
“cohorts,” which aggregate plant individuals with similar size, type, and successional status (Fisher
et al., 2015), will allow more detailed fire model development.

(4) More fire‐related observations for plant mortality and recovery are needed to improve the fire impact
simulation by considering variable recovery rates and interspecies competition. We only considered
stand‐replacing postfire recovery without changing vegetation dynamics in this work. Integration of
the fire model with DGVMs will be needed to fully simulate fire‐vegetation dynamics in TEMs.
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