Reduction in NO$_x$ Emission Trends over China: Regional and Seasonal Variations

Dasa Gu,* Yuhang Wang, Charles Smeltzer, and Zhen Liu†

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, United States

Supporting Information

ABSTRACT: We analyzed satellite observations of nitrogen dioxide (NO$_2$) columns by the Ozone Monitoring Instrument (OMI) over China from 2005 to 2010 in order to estimate the top-down anthropogenic nitrogen oxides (NO$_x$) emission trends. Since NO$_x$ emissions were affected by the economic slowdown in 2009, we removed one year of abnormal data in the analysis. The estimated average emission trend is $4.01 \pm 1.39\%$ yr$^{-1}$, which is slower than the trend of $5.8-10.8\%$ yr$^{-1}$ reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trends. The average NO$_x$ emission trend of $3.47 \pm 1.07\%$ yr$^{-1}$ in warm season (June–September) is less than the trend of $5.03 \pm 1.92\%$ yr$^{-1}$ in cool season (October–May). The regional annual emission trends decrease from $4.76 \pm 1.61\%$ yr$^{-1}$ in North China Plain to $3.11 \pm 0.98\%$ yr$^{-1}$ in Yangtze River Delta and further down to $-4.39 \pm 1.81\%$ yr$^{-1}$ in Pearl River Delta. The annual emission trends of the four largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are $-0.76 \pm 0.29\%$, $0.69 \pm 0.27\%$, $-4.46 \pm 1.22\%$, and $-7.18 \pm 2.88\%$ yr$^{-1}$, considerably lower than the regional averages or surrounding rural regions. These results appear to suggest that a number of factors, including emission control measures of thermal power plants, increased hydro-power usage, vehicle emission regulations, and closure or migration of high-emission industries, have significantly reduced or even reversed the increasing trend of NO$_x$ emissions in more economically developed megacities and southern coastal regions, but their effects are not as significant in other major cities or less economically developed regions.

INTRODUCTION

The rapid economic growth in China during the last two decades led to a dramatic increase of energy generation and consumption, which significantly increased nitrogen oxides (NO$_x$ = NO + NO$_2$) emissions and thereby the tropospheric nitrogen dioxide (NO$_2$) column densities. Previous studies reported increasing trends varying from 5.8% to 10.8% yr$^{-1}$ for NO$_x$ emissions in the past two decades. Recent studies found that NO$_x$ reduction devices have been widely installed in power plants and vehicle emissions. Recent studies found that NO$_x$ reduction devices have been widely installed in power plants and vehicle emissions. Recent studies found that NO$_x$ reduction devices have been widely installed in power plants and vehicle emissions. Recent studies found that NO$_x$ reduction devices have been widely installed in power plants and vehicle emissions. Recent studies found that NO$_x$ reduction devices have been widely installed in power plants and vehicle emissions. The traditional bottom-up inventories of NO$_x$ emissions are estimated using emission source factors and statistical data. They could, therefore, have large uncertainties in China where the emission information is incomplete. Top-down inventories, constrained by satellite observations, could help reduce emission uncertainties. Measurements by satellite instruments including Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI) have been used to estimate the NO$_x$ emissions in China and the long-term trends from past decade. OMI measurements have also been used to estimate NO$_x$ changes from the 2008 Beijing Olympics Games as well as economic recessions and power plant constructions in China in recent years.

In this study, we analyzed OMI observations of NO$_2$ columns over China from 2005 to 2010 and estimated NO$_x$ emission trends using simulations of a 3-D Regional chemical transport Model (REAM). As we will discuss, the regional and seasonal differences in NO$_x$ emission trends are very large. In particular, the economically developed Pearl River Delta regions, which include Guangzhou, Shenzhen, and Hong Kong, show a clear decreasing trend. Our study focuses on quantifying these emission trends and explores the factors contributing to the reduction of NO$_x$ emission trends compared to pre-2005 periods and the regional, seasonal, and urban-rural variations in the emission trends.

MATERIALS AND METHODS

The OMI instrument onboard the NASA Aura satellite has a global coverage with a nadir horizontal resolution of 24 × 13
km², and passes across the equator at about 13:40 local time. Row anomalies in OMI were found in June 2007 and changed over time. We excluded the data in all flagged rows with anomalies from 2005 to 2010 to obtain a consistent data set. In addition, we only use NO₂ column data when cloud fraction is <20% and the column value is greater (by 150%) than the error estimate.

In this study, we calculated tropospheric NO₂ vertical column densities (VCDs) using the KNMI Dutch OMI NO₂ (DOMINO v2.0) retrieval algorithm with a priori profiles from REAM in place of the default KNMI profiles simulated by the coarser-resolution global chemical transport model TM4. We assume that there is no significant trend in tropospheric NO₂ profiles and used REAM simulated monthly mean tropospheric NO₂ profiles of 2007 as a priori profiles to calculate air mass factors (AMFs) for OMI NO₂ retrievals. As such, the derived emission trends are attributed solely to the observed column NO₂ changes and can be compared to previous column-change based studies. Some studies assumed a constant proportionality between satellite tropospheric NO₂ column change (ΔNO₂) and changes in tropospheric NO₂ columns (Ω): $\frac{\Delta E}{E} = \beta \times \frac{\Delta \Omega}{\Omega}$ (1) where ΔE is the change of NO₂ emissions, and $\Delta \Omega$ is the resulting change in simulated tropospheric NO₂ columns, and β is the local emission-to-column sensitivity. Lu and Streets showed the nonlinearity in β, the value of which decreased from 2 to 0.7 during 1996–2010 as NO₂ emissions and hence NO₂ concentrations over Indian power plants increased. We computed the β values using REAM for a 15% local emission perturbation, we obtained essentially the same results. We calculated the mean β values for the year, and warm (June–September) and cool (October–May) seasons, respectively. The change of annual average β as a function of emissions is shown in Figure 1. As surface NO₂ emission increases, the value of β decreases from 1.5 to 0.7 as the chemical nonlinearity effect becomes more significant. The spatial distribution of β is shown in Figure S1 of the Supporting Information, SI. Over high NO₂ emission regions of eastern China, the annual mean value of β is in the range of 0.7–0.9, implying that relative anthropogenic emission change is 10–30% lower than NO₂ column change. Our β ratios are lower over eastern China than the global model results by Lamsal et al. (SI).

Applying the β ratios to satellite tropospheric NO₂ column observations, we compute the NO₂ emission changes from 2005 to 2010. We then estimate the monotonic trends using the Mann-Kendall method with Sen’s slope estimator, which is a nonparametric statistical method and has been applied in long-time trend analysis of NO₂, ozone, and other trace gases. By using the Mann-Kendall method, we minimize the impacts of seasonal variations and extreme values in the trend analysis. In this study, only statistically significant trend values (using z-test in the Mann-Kendall method) are reported, and the trend uncertainty is given as the 95th percentile confidence interval.

Instead of a linearized trend, we compute in this study the compound annual growth rate, which implicitly assumes exponential emission growth. Many previous studies computed a linearized trend over the whole study period, which is normalized to the emission rate in the first year or an average over the study period. The linearized trend makes it difficult to compare emission rate changes since the normalization year varies among the studies. Furthermore, the implicit assumption of a linearized trend that the per-year (relative) growth rate decreases gradually during the study period cannot be easily justified. A linearized trend normalized to the emission rate in the first year tends to overestimate the growth rate if emission increases and underestimate the reduction rate if emission decreases.

For regional trend analysis, we define 4 regions (Figure S2 of the SI): Northeast China (NEC, 29°–41° N and 108.75°–123.25° E), North China Plain (NCP, 34°–40° N and 113°–120° E), Yangtze River Delta (YRD, 30°–32.5° N and 118°–122° E) and Pearl River Delta (PRD, 22°–23.5° and 112.5°–114° E). On the basis of correlation analysis of monthly trends, we define June to September as warm season and October to May as cool season in the seasonal analysis.

Impact of Economic Recession

The Chinese economy went into a recession in late 2008 after the summer Olympic Games and lasted for ~1 year. The total import and export statistics showed continuing growth from 2005 to the middle of 2008, a sudden drop in 2009 coinciding with the recession, and a recovery in 2010. Similarly, the average OMI tropospheric NO₂ VCDs over China (Figure 2) showed...
corresponding changes. Previous studies found that the economic recession of 2009 had a significant effect on anthropogenic \(\text{NO}_x \) emissions.20,23 To properly characterize the trends of \(\text{NO}_x \) emissions and make comparison with previous studies, we choose to exclude one year data from August 2008 to July 2009 in this work. Including the economic recession period in analysis would result in a decrease of the annual-mean \(\text{NO}_x \) emission trend over China from 4.01% to 3.87% yr\(^{-1}\).

RESULTS AND DISCUSSION

Seasonal and Spatial Variations

Figure 2 shows significant seasonal variations in OMI tropospheric \(\text{NO}_x \) columns with a maximum in cool season and a minimum in warm season, reflecting in part a shorter photochemical lifetime in warm season. We examine the seasonal variation of \(\text{NO}_x \) emission trend by month and VCDs (Figure S3 of the SI). While the emission trend is mostly positive generally in a range of 3–5% yr\(^{-1}\), we also find negative emission trend down to −7% yr\(^{-1}\) in warm season for high \(\text{NO}_2 \) VCD regions, indicating potentially significant seasonal variation of \(\text{NO}_x \) emission trend in high emission regions.

We show in Figure 3 the distributions of the annual-mean OMI-derived \(\text{NO}_x \) emission trends as well as the averages for warm and cool seasons. The most striking spatial feature is the decreasing trend of \(\text{NO}_x \) emissions over the PRD region. A closer inspection shows another region, in the vicinity of YRD (near Shanghai and nearby Jiangsu and Zhejiang provinces), also has generally lower increasing emission trends or even decreasing trends. In general, \(\text{NO}_x \) emissions have lower increases over affluent and economically developed coastal regions than less developed and relatively poor inland areas.

The spatial distributions of emission trends for warm and cool seasons also follow a similar pattern. However, the average trend of \(3.47 \pm 1.07\% \text{ yr}^{-1} \) in warm season is lower than \(5.03 \pm 1.92\% \text{ yr}^{-1} \) in cool season. In addition, the warm season distribution shows a much larger negative trend region surrounding PRD than in the cool season. The growth rate of \(\text{NO}_x \) emissions is in general lower in southern China than northern China, likely reflecting the more extensive consumption of hydropower (e.g., the Three Gorges Dam) generated electricity in the warm season in southern China.59 We will examine this factor in the next section.

Regional Trend Variations

We examine here annual trends in different regions to understand the large regional variations (Figure 3). Table 1 shows that more economically developed and more affluent PRD and YRD regions have lower emission trends than NCP and NEC.

Our estimated national annual compound growth rate of 4.01 ± 1.39% yr\(^{-1}\) for \(\text{NO}_x \) emission is lower than previously estimated \(\text{NO}_x \) emission trends of 5.8–10.8% yr\(^{-1}\) or tropospheric \(\text{NO}_2 \) column trends of 7.3–29% yr\(^{-1}\) during 1996–2006. The previous estimates of emission and \(\text{NO}_2 \) column trends were summarized in Tables 1 and S1 (SI), respectively. As we discussed previously, a linearized growth rate estimate tends to have a higher increase and lower decrease than a compound growth rate and the difference is about 10% for our study period (Table S2 in SI). More important is the scaling factor of column to emission trend ratio, \(\beta \), in the range of 0.7–0.9 over high \(\text{NO}_x \) emission regions of eastern China, which leads to 10–30% lower relative emission changes than column \(\text{NO}_x \) changes (eq 1, and Tables S2 and S3 of the SI). After taking into account of methodological difference (20–40%) from previous studies, the trend of \(\text{NO}_x \) emissions still appears to have slowed from the rates in 1996–2006. A recent study estimated a bottom-up \(\text{NO}_x \) emission trend of 5.4% yr\(^{-1}\) over China during 2007–2010,60 which is consistent with our finding. However, we do not have adequate information to compare bottom-up emission trend estimates with the top-down trends in detail. Instead, we focus our discussion on the major factors that could significantly affect \(\text{NO}_x \) emission trends.

An important policy factor relevant to emission trends during 2005–2010 is the Energy Saving and Emission Reduction Policy. The policy was implemented in the 11th Five-Year Plan (2006–2010) in order to reduce energy consumption per unit

![Figure 2](https://example.com/f2.png)
Figure 2. Total national import and export in China58 and monthly average tropospheric \(\text{NO}_2 \) VCDs over China during 2005–2010.

![Figure 3](https://example.com/f3.png)
Figure 3. Annual and seasonal (warm and cool) relative \(\text{NO}_x \) emission trends over China during 2005–2010. Warm season is June–September and cool season is October–May.
of gross domestic product (GDP) by 20% and major pollutant emissions by 10% during the plan period.61 The Chinese government also put it into the performance evaluation of provincial governors from 2007. Power plants, petroleum industries, iron and steel industries were regulated due to their high-energy consumption and pollutant emissions.

An important technology improvement is NOX emission reduction of thermal power generation. It is required by the Chinese Air Pollutants Emission Standards of Thermal Power Stations (GB13223–2003). During 2006–2010, 76.83 million kilowatt (kW) thermal power generation capacity of small stations was closed, out of a total of 900 million kW total thermal power generation capacity of small Chinese power plants.62,63 At the end of 2007, stations was closed, out of a total of 900 million kW total thermal power generation capacity of small Chinese power plants in YRD region.64 It is required by the Chinese Air Pollutants Emission Standards of Thermal Power Stations (GB3095–2012) to install the Denitrification (DeNOx) systems, in which 96% used the Selective Catalytic Reduction (SCR) (nearly 90% reduction efficiency) and 4% used Selective Non-Catalytic Reduction (SNCR) (40% ~ 70% reduction efficiency).65 It was estimated that 3 million tons of thermal power generated NOX emissions could be reduced by the end of 2010, which accounts 28% of total thermal power generated NOX during the period.66 The installation of DeNOX systems was initially concentrated in the vicinity of the 4 largest megacities, the impact of which will be discussed in the next section. These factors alone, however, do not necessarily explain the regional variations in Table 1, although power plants in PRD and YRD regions are likely to be preferentially fitted with DeNOX systems due to stronger enforcements and potentially higher public awareness of environmental issues among the more affluent population.67 One likely important factor is the increasing use of hydro and nuclear power, and it is estimated that hydropower capacity increased by 13% yr−1 in China from 2005 to 2010.68 The larger increase of hydropower mainly benefits southern China where it is generated.69,70

Among large NOX emission regions, PRD is the only one showing a significant decreasing trend of NOX emissions. The specific reasons are not entirely clear. As the most economically developed region in China, PRD, is also the first region that made substantial efforts to reduce major pollutant emissions to improve local environments, which appeared to be successful. In addition to using hydro and nuclear power68,70,71 and implementing more stringent vehicle emission standards in major cities, the rapid closure of energy-inefficient industries and relocation of high-energy consumption industries to inland province could be a major factor.72–77 Increasing labor costs, the economic recession, and government policies encouraging technology upgrades all appeared to contribute to the observed decreasing emission trend in that region.

Megacity Trends and Urban-Rural Difference. The disparity of NOX emission trends as a function of economic development is more evident for megacities. In Figure 4, we show estimated NOX emission trends for the 4 largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen, all of which have >10 million in population and > $100 billion in GDP per year. The annual NOX relative emission trends of these cities are −0.76 ± 0.29%, 0.69 ± 0.27%, −4.46 ± 1.22%, and −7.18 ± 2.88% yr−1, respectively. Guangzhou and Shenzhen, which have negative emission trends, are located in the PRD region. In comparison, we also show in the figure the next 8 major cities ranked by their GDP values in 2009.78 The annual relative emission trends of the 4 largest megacities are less than 1% or negative, while the other cities have larger positive trends. Also shown in Figure 4 are the emission trends for the nearby rural regions defined as the surrounding eight grids of a city grid. While the difference between urban and rural regions are relatively small for the other 8 cities, the rural regions surrounding the 4 largest megacities show consistently higher emission trends than the cities, although the rural trends of the 4 largest megacities are still less than the other cities in general.

Table 1. Comparison of National and Regional Trends of NOx Emissions over China between This and Previous Studies

<table>
<thead>
<tr>
<th>period</th>
<th>region</th>
<th>annual trend (% yr−1)</th>
<th>method and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005–2010</td>
<td>China</td>
<td>4.01 ± 1.39</td>
<td>OMI - REAM; compound rate; this work</td>
</tr>
<tr>
<td></td>
<td>Northeast China</td>
<td>4.55 ± 1.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North China Plain</td>
<td>4.76 ± 1.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yangtze River Delta</td>
<td>3.11 ± 0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pearl River Delta</td>
<td>−4.39 ± 1.81</td>
<td></td>
</tr>
<tr>
<td>1996–2002</td>
<td>China</td>
<td>5.8</td>
<td>GOME – CMAQ; compound rate; Kurokawa el al.5</td>
</tr>
<tr>
<td></td>
<td>North China Plain</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yangtze River Delta</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>1997–2006</td>
<td>China</td>
<td>7.3</td>
<td>GOME & SCIAMACHY - IMAGES CTM; compound rate; Stavrakou et al.7</td>
</tr>
<tr>
<td>2000–2005</td>
<td>Center East China</td>
<td>10.8</td>
<td>GOME & SCIAMACHY – CMAQ/REAS; linearized rate; He et al.1</td>
</tr>
<tr>
<td></td>
<td>Yangtze River Delta</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

“Additional top-down emission trend estimates are listed in Table S1 in Supporting Information.
As mentioned before, DeNO\textsubscript{x} systems were gradually applied to thermal power plants in China during 2006–2010, and power plants in the 4 largest megacities were preferentially fitted these systems due to stronger enforcements and higher public awareness.67,79,80 The use of SCR and SNCR technologies could have significantly reduced NO\textsubscript{x} emissions in the 4 largest megacities in past few years, but we expect that the benefit for further emission reduction will taper off where most power plants have these technologies. However, we may begin to see NO\textsubscript{x} emission reduction in other cities in future as the use of DeNO\textsubscript{x} systems increases in other regions.

Due to rapid economic development, the numbers of on-road vehicles have increased significantly in all Chinese cities. In cities like Shanghai where new vehicle licenses are limited, the number of on-road vehicles did decrease proportionally since residents often bought vehicle licenses from surrounding regions. The fact that the 4 largest megacities showed lower emission trends is likely due to the much stricter vehicle emission standards and more effective enforcement than the other cities.5,8,9 The Euro 3 standard was implemented in 2005, and the Euro 4 standard was implemented in 2008. Guangzhou changed buses and taxi cabs to liquefied petroleum gas (LPG) engines, starting from 2004. By 2007, 80% of buses and all 16,000 taxis in Guangzhou were fitted with LPG engines which had lower NO\textsubscript{x} emissions than gasoline engines.81 The extensive development of metro railways is another reason. The fractions of public transportation by metro railways are 37% in Shanghai, 23% in Beijing, and 15% in Guangzhou by 2009, which are much higher than the other cities.78

Lastly, the 4 largest megacities are more willing to close small energy-inefficient industries or relocate high energy-consumption industries due to a combination of urban development needs and public environmental concerns. The economic loss from losing these industries can be easily recovered by development of new business in these cities. The Olympics Games in Beijing in 2008, the Asian Game in Guangzhou in 2010, and the World Expo in Shanghai in 2010 likely precipitated the migration of high-emission industries away from these cities.

\textbf{Implications.} We find that using the compound growth rate and accounting for the nonlinear ratio of relative column NO\textsubscript{2} to emission trend are important for estimating NO\textsubscript{x} emission trends using satellite column observations. Our estimation of an annual anthropogenic NO\textsubscript{x} emission increase of 4.01 ± 1.39% yr-1 is significantly lower than previous estimates of 5.8–10.8% yr-1 in China over the period of 1996–2006, suggesting a slowdown of NO\textsubscript{x} emissions over China in more recent years. The average NO\textsubscript{x} emission trend is larger in cool season (5.03 ± 1.92% yr-1) than in warm season (3.47 ± 1.07% yr-1), reflecting in part potentially more extensive usage of hydro-power in warm season. The regional difference is even larger. More economically developed and affluent PRD and YRD regions have lower (than NCP) or negative emission trends. The NO\textsubscript{x} emission trends of the 4 largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are −0.76 ± 0.29%, 0.69 ± 0.27%, −4.46 ± 1.22%, and −7.18 ± 2.88% yr-1, considerably lower than the trends of 2–7.8% yr-1 of the other 8 major cities. The difference is also apparent when comparing urban emission trends to surrounding regions in these cities. The rural regions surrounding the 4 largest megacities show consistently higher emission trends than the cities, while the difference between urban and rural regions are relatively small for the other 8 major cities.

The lower emission increases (and even decreases) in economically developed regions reflect successful implementation of environmental regulations from direct emission control to industry changes. Looking into the future, it is likely that some of these control measures will be gradually implemented in other megacities and economically developed regions (other than PRD and YRD), which will help reduce emissions growth in those cities and broader regions in China. The implementation of these measures will likely be slower over rural and less economically developed regions of China, and the rate of emission increase will likely remain high as economy in those regions continues to develop.

\section*{ASSOCIATED CONTENT}

\section*{Supporting Information}

(1) Summary of NO\textsubscript{2} column trends in previous study results (Table S1); (2) β value distribution (Figure S1); (3) Relative emission and VCD trend estimates in this work (Table S2 and S3, Figure S2 and S3). This material is available free of charge via the Internet at http://pubs.acs.org.

\section*{AUTHOR INFORMATION}

\textbf{Corresponding Author}

*Phone: (404)333-9654; e-mail: dasagu@gatech.edu.

\textbf{Present Address}

Combustion Research Facility, Sandia National Laboratories, Livermore, CA, U.S.

\textbf{Notes}

The authors declare no competing financial interest.

\section*{ACKNOWLEDGMENTS}

This work was supported by the National Science Foundation Atmospheric Chemistry and NASA ACMP Programs. We thank Kebin He for his suggestion of the impact of DeNO\textsubscript{x} system installation on megacities.

\section*{REFERENCES}

(1) He, Y.; Uno, I.; Wang, Z.; Ohara, T.; Sugimoto, N.; Shimizu, A.; Richter, A.; Burrows, J. P. Variations of the increasing trend of tropospheric NO\textsubscript{2} over central east China during the past decade. \textit{Atmos. Environ.} \textbf{2007}, \textit{41} (23), 4865–4876.

(2) Kurokawa, J.; Yumimoto, K.; Uno, I.; Ohara, T. Adjoint inverse modeling of NO\textsubscript{x} emissions over eastern China using satellite observations of NO\textsubscript{2} vertical column densities. \textit{Atmos. Environ.} \textbf{2009}, \textit{43} (11), 1878–1887.

(3) Stavropoulou, T.; Muller, J. F.; Boersma, K. F.; De Smedt, I.; van der A, R. J. Assessing the distribution and growth rates of NO\textsubscript{x} emission sources by inverting a 10-year record of NO\textsubscript{2} satellite columns. \textit{Geophys. Res. Lett.} \textbf{2008}, \textit{35} (10), S.

Lin, J.; Nielsen, C. P.; Zhao, Y.; Lei, Y.; Liu, Y.; McElroy, M. B. Recent changes in particulate air pollution over China observed from space and the ground: Effectiveness of emission control. *Environ. Sci. Technol.* 2010, 44 (20), 7771–7776.

(51) Carslaw, D. C. Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions. Atmos. Environ. 2005, 39 (26), 4793−4802.

(54) Shon, Z. H.; Kim, K. H.; Song, S. K. Long-term trend in NOx and NO2 levels and their emission ratio in relation to road traffic activities in East Asia. Atmos. Environ. 2011, 45 (18), 3120−3131.

