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Abstract

The Regional Air Quality forecAST (RAQAST) model is a regional chemical transport modeling system for ozone and

its precursors over the United States. Since the grid size is 70 by 70 km, forecasts cannot be made for a specific surface site.

We use EPA monitoring stations from the Atlanta area to downscale and improve local forecasts using RAQAST outputs.

We use the Model Diagnostic and Correction (MDC) approach. First, we regress the observations on the model outputs

with an autoregressive noise component. Second, we regress the residuals of this first regression on variables associated

with wind speed, precipitation amounts and the diurnal cycle. Deficiencies of 3-D model results are identified and

corrected. Evaluation using measurements for a different period confirms that the statistically adjusted outputs reduce

forecast errors by up to 25%.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface ozone is one of EPA criteria pollutants
that can be potentially hazardous to human health
and biological ecosystems (NRC, 1991) and is
therefore regulated under the National Ambient
Air Quality Standards. Ozone is a key precursor for
the main oxidant, hydroxyl radicals (OH) in the
troposphere. It is also a greenhouse gas, particularly
in the upper troposphere. Accurate surface or
tropospheric O3 forecast is challenging because
ozone photochemical production is nonlinear. Pre-
viously, reasonable forecasting performances have
e front matter r 2007 Elsevier Ltd. All rights reserved
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been obtained using either statistical or 3-D regional
chemical transport models (CTMs) (Ryan and
Piety, 2000; McHenry et al., 2004; Vaughan et al.,
2004; Otte et al., 2005; Jing et al., 2006).

Direct statistical methods for ozone prediction
have given reasonably good results. A thorough
inter-comparison of statistical techniques (Schlink
et al., 2003) shows that these methods can perform
very well compared to deterministic CTMs. The
best statistical techniques are the ones that can
handle nonlinearities, e.g. generalized additive
models or neural networks. Statistical methods
based on functional data analysis, i.e. treating the
collection of data points as curves, exhibited very
promising results (Damon and Guillas, 2002;
Aneiros-Perez et al., 2004). However, the nature of
.
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statistical modeling does not enable better under-
standing of chemical and physical processes, which
are simulated by CTMs.

Statistical methods can help improve the forecasts
when systematic deficiencies can be identified. Both
the coarse grid resolution and not-well understood
chemical and physical processes are the two major
factors explaining the differences. We will correct
the 3-D model outputs directly (Guillas et al., 2006).
In this work, we investigate if statistical methods
can be used to correct and downscale ozone
forecasts by a 3-D regional CTM. Our main
assumption is that the deficiencies of a CTM can
be linearly explained by explanatory variables. This
stems from the idea that usually first approxima-
tions can be easily modeled linearly. Hence, the
nonlinear effects and feedbacks are modeled by the
CTM, and some of the model deficiencies are
corrected using statistical comparisons between
observations and forecasts from the past. Therefore,
we combine the strengths of chemical and physical
modeling of the CTM with the use of historical data
via statistical methods to enable better forecasts.
Our approach is novel because of this combination
of strengths. Previous studies of ozone forecasts
using CTMs have not taken advantage of statistical
methods to directly correct the outputs. We show
that the CTM forecasts are often greatly improved.

2. Description of the RAQAST modeling system

The Regional Air Quality forecAST (RAQAST)
is a fully automated 48-h forecasting system avail-
able online (http://apollo.eas.gatech.edu/forecast).
The RAQAST system has two components, the
Penn State/National Center for Atmospheric Re-
search mesoscale model MM5 and a regional CTM.
The models have a horizontal spatial resolution of
70 km with 23 vertical layers from the surface to
10 hPa (with 20 layers below 100 hPa). The fore-
casting system predicts meteorological variables and
the concentrations of ozone and its precursors over
North America.

Our goal in this work is to improve the chemical
forecasts. To minimize the error in meteorological
forecasts, we use four-dimensional data assimilation
(FDDA) (Stauffer et al., 1991) with the 6-h
National Center for Environmental Prediction
(NCEP) reanalysis data, surface and rawinsonde
observations. Most meteorological variables are
archived every 30min except those related to
convection processes, which are archived every
2.5min because of the highly temporally varying
nature of convection. The horizontal domain of
MM5 has five extra grids beyond that of CTM on
every side to minimize potential transport anomalies
near the boundaries. We use the ETA Mellor–
Yamada–Janjic (MYJ) 2.5-order closure scheme
(Black, 1994) for turbulent calculation.

The regional CTM (Zeng et al., 2003, 2006; Choi
et al., 2005; Wang et al., 2006; Jing et al., 2006) has
been used and updated from the previous model by
McKeen et al. (1991), and the photochemical, dry
and wet deposition modules are adopted from the
GEOS-CHEM model (Bey et al., 2001 and refer-
ences therein). The chemistry module incorporates a
fast and numerically accurate Gear-type solver
(Jacobson and Turco, 1994). The model includes a
detailed photochemical mechanism with about 200
reactions and 120 concentration-varying chemical
tracers; 24 tracers (family or species) are transported
to describe O3–NOx–hydrogen chemistry. The
photolysis rate is calculated with an efficient Fast-
J algorithm (Wild et al., 2000), which accounts for
cloud, aerosol and Mie scattering. The altitude
dependent cloud optical depth is calculated using
MM5 liquid water content (Stephens et al., 1978).
The UV surface albedo for the photolysis rate
calculation is obtained from TOMS observations
(Herman and Celarier, 1997). The tracer transport
scheme is that by Walcek (2000). The cumulus
convective scheme by Grell (1993) is implemented in
the CTM to be consistent with the meteorological
model; sub-grid scale updraft and downdraft
processes and large-scale subsidence are considered.
The convective wet scavenging for soluble tracers
follows that by Liu et al. (2001). The top and
bottom layers of convection are determined by
MM5 simulations; cloud fraction is determined
using the scheme described by Geleyn (1981).

We apply the simulation results of the global
GEOS-CHEM model to specify boundary condi-
tions of trace gas concentrations in the regional
model. Fossil fuel emissions of NOx and CO over
the US are obtained from the 1999 US Environ-
mental Protection Agency National Emission In-
ventory version 2. For regions in Canada and
Mexico not covered by the EPA NEI inventory, the
GEIA global emission inventory (Benkovitz et al.,
1996) is used. Other inventories for combustion and
industrial sources, and algorithms for emissions
from vegetation and soils are taken from the global
GEOS-CHEM model (Bey et al., 2001). The
monthly mean leaf area index (LAI) distribution is

http://apollo.eas.gatech.edu/forecast
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derived from 1 km Advanced Very High Resolution
Radiometer (AVHRR) data by Bonan et al. (2002).
The lightning NOx algorithm in the model is
described by Choi et al. (2005). Cloud-to-ground
lightning flashes in the model are constrained by the
observations from the National Lightning Detec-
tion Network (NLDN). The forecasted chemical
concentrations from the model are archived every
hour.

3. Observations

The observed data set for hourly ozone in
Atlanta, Georgia covers the period of June–August
2005. The total number of EPA AIRNow network
of measure sites in Atlanta is 12. They are:
Confederate Ave., Conyers, Douglasville, Fayette-
ville, Gwinnett, Kennesaw, McDonough, Newnan,
South Dekalb, Tucker, Waleska, Yorkville. Because
some sites did not report data during that period
and some sites had too many missing values, finally
seven sites were selected (see Fig. 1). They are (1)
Confederate Ave. ð33:721�N, 84:35778�WÞ, (2)
Douglasville ð33:743�N; 84:779�WÞ, (3) Fayetteville
ð33:456�N; 84:420�WÞ, (4) Kennesaw ð34:014�N;
84:608�WÞ, (5) McDonough ð33:435�N; 84:162�WÞ,
(6) Newnan ð33:404�N; 84:7468�WÞ and (7) York-
ville ð33:928�N; 85:045�WÞ.
Fig. 1. EPA stations in the Atlanta area used in the study.
The hourly forecasts for the period of June–
August 2005 were given by the RAQAST system.
The choice of the grid cell is as follows: we pick the
grid cell that includes the measurement station, and
the grid cells are internally coded through their
lower left corners. In the analysis, we use the period
of June 1–August 19, 2005 as ‘‘historical’’ and the
period of August 20–29 for evaluation. Fig. 2
displays the measurements taken at the seven EPA
monitoring stations in the metropolitan Atlanta
area used in our study and the RAQAST hindcast
for August 21–28, 2005. We can see that the model
provides forecasts that are higher or lower than
observations. For instance, the peak on August 22 is
overestimated by RAQAST, whereas the peak on
August 26 is underestimated. Minimum values at
night time are systematically underestimated by
RAQAST throughout August 21–28, 2005. The
coarse resolution of RAQAST is the reason why the
model does not capture local variations.

A number of parameters were considered in the
statistical forecasts since they can strongly affect
ozone concentrations. Temperature, wind speed,
boundary layer height and precipitation are in-
cluded because these variables characterize the
meteorological environment for mixing, transport
and biogenic emissions. After some preliminary
correlation studies, we find that temperature has
high correlation with the daily cycle, and wind speed
has correlation with boundary layer height. Tem-
perature seems to be well modeled by MM5 data
assimilation; and the effect of temperature on
ozone, as modeled in RAQAST, seems to be well
understood. Indeed, in preliminary analyzes, tem-
perature never played a significant role in explaining
the discrepancies between RAQAST and observa-
tions. Furthermore, the high correlation with the
daily cycle triggers near-collinearities in the regres-
sions and thus deteriorates the diagnostics and
correction (Stewart, 1987). Besides, by removing
temperature and boundary layer height, we avoid
some potential overfitting. So, wind speed and
precipitation were selected to statistically improve
the RAQAST outputs.

4. Correction and downscaling of model outputs

We follow the Model Diagnostic and Correction
(MDC) approach (Guillas et al., 2006). The gist of
the method is to explain the deficiencies of the
model by a linear combination of a set of
explanatory variables. Hence, we assume that, in
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Fig. 2. RAQAST outputs (dashed red line) and EPA measurements (solid lines) from stations located in the corresponding RAQAST grid cell, August 21–28, 2005. Top left panel: cell 1

and stations Fayetteville and Newnan. Top right panel: cell 2 and stations Confederate Ave., Douglasville, Kennesaw, Yorkville. Lower panel: cell 3 and station McDonough.
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first approximation, the model errors are linear in
the variables (but we do not assume that ozone itself
is linearly related to the explanatory variables).
First, the deficiencies are estimated in a linear
regression of ozone measurements on the model
outputs. Second, the deficiencies are attributed to
specific ancillary variables (wind speed and pre-
cipitation) in a linear regression.

Thus the two steps proceed as follows:
�
 Step 1: Regress the measurements on model
outputs, with an autoregressive model of order
one (AR(1)) component. We denote by OðtÞ the
measured hourly ozone, and by MðtÞ the model
outputs:

OðtÞ ¼ cþ aMðtÞ þNt, (1)

where Nt is AR(1), i.e. Nt ¼ rNt�1 þ �t with ð�tÞ

white noise.

�
 Step 2: Regress the estimated residuals �̂t from

the first step regression on the indicators of the
hours hiðtÞ ¼ 1 for the hour i and 0 otherwise,
precipitation amounts rðtÞ, and wind speed wðtÞ.
We included diurnal harmonics of wðtÞ since the
wind speed effect on ozone, even for model
deficiencies, can be very different for different
hours of the day. We denote by wcðtÞ the wind
speed multiplied by cosð2pðt� 6Þ=24Þ, and wsðtÞ

the wind speed multiplied by sinð2pðt� 6Þ=24Þ:

�̂t ¼
X12

i¼1

aihiðtÞ þ crrðtÞ þ cwcwcðtÞ þ cwswsðtÞ þ �0t,

(2)

where ð�0tÞ is a white noise.
The AR term in the first step is included to
account for unexplained variability. Fig. 3 shows
that if we carry out the MDC method without
including the AR term, the residuals still present
strong correlations, whereas it is not the case when
an AR(1) term is included. However, there are still
some significant autocorrelations, typically around
0.2, in the residuals from the second regression, so
we improve step 1 by including an AR(2) noise:

Step 1: AR(2). Regress the measurements on
model outputs, with an autoregressive model of
order two (AR(2)) component. We denote by OðtÞ

the measured hourly ozone, and by MðtÞ the model
outputs:

OðtÞ ¼ cþ aMðtÞ þNt, (3)
where Nt is AR(2), i.e. Nt ¼ r1Nt�1 þ r2Nt�2 þ �t

with ð�tÞ white noise.
This choice of an AR(2) noise is better. Fig. 3

displays the autocorrelation functions (ACFs) of the
ð�0tÞ in step 2 for three cases: step 1 with Nt white
noise (left column), step 1 with Nt AR(1) (middle
column) and step 1 with Nt AR(2) (right column). It
shows that the temporal correlations are high for Nt

white noise. It means that ð�0tÞ cannot be considered
white noise, and thus justifies a modeling of Nt by
an autoregressive process. With Nt AR(1), the
correlations are much smaller, and with Nt AR(2)
they are close to zero. Therefore, the AR(2)
approach seems beneficial. Furthermore, comparing
Nt AR(2) to Nt AR(1), the Residual Standard
Errors in the regressions are lower, the uncertainties
in estimates are lower, and the predictions are
slightly better. It would be interesting to build a
statistical technique that would help us determine
the optimal structure for the residuals in the first
regression, but this goes beyond the scope of this
paper. Moreover, we believe that only a marginal
improvement would be gained from fitting a more
complicated model than AR(2) in the first step
because the ACFs are almost flat.

We illustrate our diagnostics by showing the
results of the two regressions for station 6. Through-
out the analysis, we use the term significant for
statistically significant, under the normal assumption
that an estimate which is twice as large in absolute
value than its standard deviation is significant at the
95% level. Table 1 gives the results of the first
regression in the MDC method. Significant additive
and multiplicative biases underscore the overall
deficiencies in RAQAST. The multiplicative bias of
0.52 indicates that the amplitude of typical daily
variations in RAQAST are larger than the observed
ones: The relationship between observations and
model outputs is optimal (in the least squares sense)
when a factor of 0.52 is applied to the model outputs.
Note that this does not mean that the amplitude of
the model outputs is twice as large as the amplitude
of observations because the term Nt includes such
variations as well. Thus, the scalar a ought to be
interpreted more as a index for how much informa-
tion the model can explain in the data. Both
autocorrelation parameters r1 and r2 are highly
significant. It illustrates the fact that there is a need,
in the fitting procedure, for such short-term auto-
correlations. The hour-to-hour chemical and physi-
cal variations that RAQAST was unable to model
are captured by the AR(2) time series.
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Fig. 3. Sample autocorrelation functions (ACF) of the residuals in step 2, after carrying out the two steps of the MDC method. The ACF

are displayed for the cases without or with an AR term in the first regression.
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Table 2

Coefficient estimates for the hourly indicators, with standard

errors in parentheses

Step 2, station 6

Coefficient estimates

1 �1.29 (0.69)

2 �2.07 (0.69)

3 �0.94 (0.69)

4 �0.74 (0.68)

5 �1.08 (0.68)

6 �1.28 (0.65)

7 �0.26 (0.65)

8 3.59 (0.66)

9 2.98 (0.66)

10 2.85 (0.67)

11 4.32 (0.68)

12 4.27 (0.69)

13 2.92 (0.69)

14 2.86 (0.70)

15 1.82 (0.70)

16 1.11 (0.70)

17 1.11 (0.69)

18 �1.14 (0.68)

19 �0.99 (0.69)

20 �6.09 (0.69)

21 �5.67 (0.69)

22 �1.46 (0.69)

23 �1.55 (0.69)

24 �1.33 (0.69)

Step 2 regression in the MDC method (2). Estimation is carried

out using data over the period June 1 (05:00) to August 20

(04:00). Hence the numbers 1–24 correspond to the 24 h in

05:00–04:00.

Table 3

Coefficient estimates for the wind speed multiplied by cosð2pðt� 6Þ=
24Þ, the wind speed multiplied by sinð2pðt� 6Þ=24Þ, with standard

errors in parentheses, and for the precipitation index

Step 2, station 6

Coefficient estimates

Wind speed (cos) 0.14 (0.11)

Wind speed (sin) 0.38 (0.11)

Precipitation �9.61 (3.12)

Step 2 regression in the MDC method (2). Estimation is carried

out using data over the period June 1 (05:00) to August 20

(04:00).

Table 1

Coefficient estimates, with standard errors in parentheses

Step 1, station 6

Coefficient estimates

c 11.06 (1.35)

a 0.52 (0.03)

r1 1.21 (0.022)

r2 �0.33 (0.022)

Step 1 regression in the MDC method (1). Estimation is carried

out using data over the period June 1 (05:00, hour 1) to August 20

(04:00, hour 24).

S. Guillas et al. / Atmospheric Environment 42 (2008) 1338–13481344
Table 2 shows the coefficient estimates for the
indicators of the hours, from 05:00 (hour 1) to 04:00
(hour 24). For the morning hours, the coefficients
are not significant. This indicates that RAQAST
represents well the morning variations of ozone for
this location. For the hours 12:00–19:00, the
coefficients are significantly positive. It means that,
after the adjustment for additive and multiplicative
bias in step 1, and the correction for the wind and
precipitation effect in step 2, RAQAST provides
predictions that are significantly lower than the
observations on average, for this location and for
these hours (12:00–19:00). Note that the actual
RAQAST predictions, not adjusted for biases, wind
and precipitation, are usually higher than observa-
tions, since the wind and precipitation effects can
override the hourly effect. These hours are the peak
hours for ozone, and are considered the most
difficult to predict. For the evening hours
(19:00–21:00), the coefficients are not significant.
For the night (00:00–03:00), the coefficients are
significantly negative, which indicate adjusted fore-
casts higher than observations, when all the other
influences are taken into account. As a result, the
detection of such hourly deficiencies illustrates the
shortcomings of the model in terms of daily
amplitude.

Table 3 provides information on the treatments of
two meteorological variables by RAQAST for the
prediction of ozone: wind speed and precipitation.
We used the aforementioned wind speed first
harmonics. The only significant wind speed coeffi-
cient is the one multiplied by sinð2pðt� 6Þ=24Þ, and
is positive. The values of this index are negative in
the afternoon. This demonstrates that RAQAST
does not fully reflect the influence of wind speed on
ozone. More precisely, the positive coefficient
underscores the fact that observations are more
positively correlated to these wind speed coeffi-
cients, and RAQAST forecasts ought to be more
related with wind speed first harmonics. In parti-
cular, in the afternoon, with large wind speed, the
model tends to overpredict ozone concentrations.
For precipitation, the coefficient is significantly
negative, with a non-negative index. RAQAST is
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currently not representing well enough the decrease
in ozone due to precipitation. RAQAST should
predict lower forecasts than it does now, when
precipitation occurs. All of these corrections are
carried out in the following statistical adjustment.

The corrected model outputs ~MðtÞ corresponding
to the model outputs MðtÞ for the time period
August 20 (05:00)–August 30 (04:00), for a specific
station, is given by

~MðtÞ ¼ ĉþ âMðtÞ þ N̂ 0t, (4)

where MðtÞ is the model output for the period
August 20 (05:00)–August 30 (04:00) and

N̂ 0t ¼ r̂N̂ 0t�1 þ
X12

i¼1

âihiðtÞ

þ ĉrrðtÞ þ ĉwcwcðtÞ þ ĉwswsðtÞ, ð5Þ

where the hats indicate that the quantities are
the estimates of the coefficients from the first two
steps.

Table 4 provides a comparison of the root mean
squared errors (RMSE), when comparing forecasts
made by RAQAST or by its statistically corrected
version, for the seven stations. It turns out that the
RMSE are typically improved by 10–25%. When we
compare the daily maximum 8-h average forecasts
with the observed daily maximum 8-h averages,
used by the EPA, the improvements are typically in
the 10–30% range. The RMSEs for the daily
maximum 8-h averages should be computed over a
larger period than 10 days, and they are shown here
for illustration purposes only. A careful study of the
average improvement should be done over large
Table 4

Root mean squared errors (RMSE) for the forecasts made by the RAQA

period August 20 (05:00)–August 30 (04:00)

RMSE Station

1 2 3

Hourly

RAQAST 16.74 18.76 16.32

Corrected RAQAST 13.24 15.85 14.51

Improvement (%) 20.90 15.50 11.10

Daily 8-h maximum average

RAQAST 2.37 2.83 3.31

Corrected RAQAST 1.62 2.63 2.82

Improvement (%) 31.60 7.10 14.80

Hourly errors and daily 8-h maximum average errors. Respective impr

Note: RMSEs for daily 8-h maximum average errors are only shown for

days.
samples of days where peaks are observed. This goes
beyond the scope of this paper.

To examine the spread of the errors, Fig. 4
displays the boxplots of errors for station 7. It
shows that the errors for the statistically downscaled
model are more centered towards 0 and that the
spread is largely reduced.

Fig. 5 displays the observations and the forecasts
given by RAQAST and its statistically corrected
version (upper panel) for station 6, as well as the
adjustments due to explanatory variables and hours
(lower panel). This is the station where the
improvements are the second largest (see Table 4).
It illustrates the effect statistical correction. We can
see that over this time period the adjustment
provided forecasts that are much closer to measure-
ments when the peak was overestimated by the
model (August 21, 26 and 27). However, when the
model underpredicts ozone concentration, the sta-
tistical adjustment tends to make predictions a bit
worse (August 23 and 25). Night time ozone
concentrations are better predicted by the adjusted
model. Moreover, the adjusted model shows smaller
variations than the original model.

These adjustments seem to be mainly attributed
to the step 1 correction and to a lesser extend to the
step 2. Indeed, the smaller amplitude can be
attributed to a ¼ 0:52 ð0:03Þ, and the larger values
at night can be explained by c ¼ 11:06 ð1:35Þ. The
wind and precipitation effects are a bit more
difficult to discern. The lower panel of Fig. 5
display these influences. The negative index of the
wind, multiplied by a sine function, with a positive
coefficient of 0.38 (0.11), may explain partly the
ST model and the corrected RAQAST model, over the validation

4 5 6 7

18.64 15.20 16.73 20.80

14.25 13.69 12.64 15.64

23.60 9.90 24.40 24.80

2.28 3.24 2.89 2.98

2.16 2.66 2.28 2.24

5.30 17.90 21.10 24.80

ovements in percentages are displayed.

illustration purposes, since they are based on a small sample of 10
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Fig. 4. Station 7. Boxplots of hourly prediction errors, August 20 (05:00)–August 30 (04:00). Left: RAQAST predictions, right: corrected

RAQAST predictions.

Fig. 5. Station 6. August 20 (05:00)–August 30 (04:00). Upper panel: Observations (black), RAQAST predictions (red), corrected

RAQAST predictions (green). Lower panel: Daily cycle (orange), wind speed (black) and precipitation (blue) effects in step 2. Note:

Different scales.

S. Guillas et al. / Atmospheric Environment 42 (2008) 1338–13481346
better fit to observations on August 21, 26 and
27. The precipitation amounts are close to zero
almost all the time, except on August 29. During
that day the precipitation index is positive,
with a corresponding coefficient of �9.61 (3.12).
The precipitation index decreases the values
of RAQAST outputs, which improves the predic-
tions. Similar results are obtained for the other
stations.
5. Conclusions and perspectives

MDC improvements of RAQAST outputs im-
prove forecast accuracy compared with the original
RAQAST model. In particular, the RAQAST
model sometimes overestimates peak ozone concen-
trations during the daytime and generally under-
estimates night time ozone concentrations
compared with EPA observations in Atlanta. The
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statistical adjustments of RAQAST with wind speed
and precipitation generally reduce the overestima-
tion/underestimation of the surface ozone in RA-
QAST. In the afternoon, when wind or precipitation
is present, RAQAST should provide lower fore-
casts. The daily cycle in RAQAST is still not yet
perfectly represented, with systematic overestima-
tion/underestimation depending on the hour of the
day.

Hourly RMSEs of RAQAST predictions
(15–21 ppbv) over the 10-day evaluation period are
much larger than RMSEs of 8-h daily maxima
(2–3 ppbv). Peaks of 2–3 h can be very difficult to
forecast precisely. However, averages of eight
consecutive hours are easier to predict. A potential
continuation of our work would focus on days with
high concentrations only. An adjustment based on
this training sample (which might include several
years of data) could considerably improve the
prediction of pollution episodes. Longer validation
periods would also be necessary to confirm such
results.

The statistical correction of RAQAST model
outputs sometimes makes the discrepancies of high-
peaked ozone from the model and observation
larger. Further study needs to be performed to find
other meteorological variables to improve the
forecasts of the maximum ozone peaks which are
important in the public health warning system.

It would be interesting separate the errors due to
a lack of chemical and physical representations
from the errors due to the large resolution. Running
a high resolution model would help examine the
source of the errors. The computer model is
extremely time consuming at a high resolution so
this experiment has to be carried out carefully. In
particular, misalignments for local weather features
ought to be modeled.

Choosing a grid cell corresponding to a particular
station with more advance ideas, such as distance or
wind direction, is an interesting direction. We were
able to carry out some experiment where we chose
alternatively the three grid cells, or jointly the three
of them in the regression (step 1 of MDC). The
results give residual mean square errors that are
extremely close to the ones using the grid cell which
includes the station. The inclusion of the three grid
cells naturally weights them according to the
distance, but the fit is only slightly better—with
RMSE lower by roughly 1.5%—with a risk of
overfitting. The natural extension would be to
consider weather patterns, as wind direction. How-
ever, the effective sample size will be reduced,
especially for rare weather patterns. With a larger
data set, we suggest to use empirical orthogonal
functions to carry out statistical downscaling.
Benestad (2002) presented empirically downscaled
temperature scenarios for a number of sites in
northern Europe, and used a method involving
common EOFs which account for several meteor-
ological variables at once. Also, Spak et al. (2007)
compared the dynamical downscaling for tempera-
tures with statistical regression based on EOFs and
concluded that they have similar skills.

In order to explore structural deficiencies in
RAQAST, we need to calibrate the model by
choosing the best tuning parameters. These para-
meters are inputs in the computer model such as
boundary conditions or unknown constants in
chemical or transport equations. Statistical calibra-
tion of complex computer models is a difficult and
computationally intensive task (Bayarri et al., 2002).
We expect better forecasts after calibration of
RAQAST. Nevertheless, downscaling and correc-
tion of the outputs, after calibration, will still help
give even more precise forecasts.

A fruitful extension of this work would include
spatial modeling. It would be interesting to analyze
the deficiencies in terms of spatial distributions, thus
enabling the modelers to carry out some meaningful
adjustments, say if the patterns of deficiencies match
some meteorological conditions. In particular, we
need to compare urban, suburban and rural sites
and see if there are any systematic trends. Also,
downscaling at every location in space, and not only
where monitors are situated, is of great interest. We
are currently investigating space–time approaches
for this purpose, either with space–time covariance
models or with a Bayesian space–time approach.
Both of these methods will yield measures of spatial
uncertainties as well.
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