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A comprehensive comparison of positive matrix factorization (PMF) and molecular marker-
based chemical mass balance (CMB-MM) modeling on PM2.5 source contributions was
conducted for particulate matter measurements taken at Jefferson Street, Atlanta, Georgia
(JST). The datasets used in each type of receptor modeling were different: CMB-MM used
data of primarily organic tracers plus a couple elements measured from 51 24-h PM2.5
samples collected in July 2001 and January 2002. While for PMF, with elements, ions, five
gaseous components, and eight temperature-resolved carbon fractions as the input data,
both source profiles and contributions were resolved from a total of 932 daily PM2.5 samples
covering a 3-year period between January 2000 and December 2002. The model results for
the overlapping periods (July 2001 and January 2002) were extracted for comparison. Seven
primary sources and three secondary sources were resolved by CMB-MM, while a total of
nine primary and secondary factors were resolved by PMF. On average, 107% and 85% of
PM2.5 mass were explained by CMB-MM and PMF, respectively, with secondary aerosols
handled differently in the above two methods. Four similar sources were resolved by both
methods, with good correlation for road dust, but fair for gasoline exhaust and wood
combustion. The CMB-MM diesel exhaust has very poor correlation with the PMF resolved
diesel exhaust. However, the CMB-MM combined mobile source has improved correlation
with the PMF result as comparedwith the diesel exhaust source. If only the winter data were
included, the CMB-MM combined mobile source shows enhanced correlation with the PMF
combined source, as compared with the single source of diesel exhaust or gasoline exhaust.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The complexity in emission sources of urban airborne fine
particulate matter (PM2.5) hinders effective air quality control
measures and has become a world-wide problem. Under-
standing of each source contribution to PM2.5 and the extent of
fax: +1 404 894 5638.
. Zheng).

er B.V. All rights reserved
accuracy of the apportionment results, is a prerequisite for the
formulation of effective control strategies for PM2.5 emissions.
Source apportionment can be achieved by using a variety of air
quality models. Amongst these, receptor-orientedmodeling is
one of the conventional techniques and has been in broad use
for source apportionment studies in the past decades. The
.

mailto:mzheng@eas.gatech.edu
http://dx.doi.org/10.1016/j.scitotenv.2008.01.030


291S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 4 ( 2 0 0 8 ) 2 9 0 –– 3 0 2
most commonly used receptor models include element-based
or molecular marker-based chemical mass balance (CMB) (i.e.,
CMB-Regular (Watson and Chow, 2001) and CMB-MM (Schauer
and Cass, 2000; Zheng et al., 2002)), positive matrix factoriza-
tion (PMF) (Paatero and Tapper, 1994), and UNMIX (Henry,
1997).

Applications of PMF using traditional speciation data (i.e.,
organic carbon (OC), elemental carbon (EC), major ions, and
metals) have been reported in the United States (Hopke, 2003;
Polissar et al., 1998, 2001) and around the world (Qin and
Oduyemi, 2003; Song et al., 2006). It has been reported to use
carbon fractions operationally defined by the Desert Research
Institute thermal optical reflectancemethod (Chowet al., 1993)
in PMFmodeling and the improvement in source identification
has been found (Kim et al., 2004a,b). More recently, incorpora-
tion of a number of gaseous species as additional constraints
has beenalso suggested (Kimet al., 2005; Zhouet al., 2005). This
more advanced PMF approach has shown that the inclusion of
temperature-resolved carbon fractions and gaseous compo-
nents enhanced the resolving power for the factors of gasoline,
diesel, and coal combustion/other (Liu et al., 2006).

It is of increasing interest to perform source apportion-
ment research using PMF on the basis of molecular markers
(PMF-MM). However, the limitation on sample size (n) pre-
vents from obtaining statistically meaningful source appor-
tionment results (n is thought to be at least 60–200) until very
recently (Jaeckels et al., 2007; Shrivastava et al., 2007).
Another challenge in source apportionment modeling of
PM2.5 is to verify the model-apportioned results. Direct com-
parison with the measurement data seems impossible based
on current available methods. One alternative is to inter-
compare the results by applying the same datasets, or dif-
ferent datasets but for the same time period/location, to
different modeling methods. As of the recent applications,
such intercomparisons mainly focused on results using the
same datasets, such as CMB-Regular vs. PMF (Liu et al.,
submitted for publication), PMF vs. UNMIX (Lewis et al., 2003),
and PMF-MM vs. CMB-MM (Jaeckels et al., 2007; Shrivastava
et al., 2007). Fewer comparative studies have been reported to
use different datasets but for the same time period/location
for different model apportionments, which also is believed to
be an important distinction (Kim et al., 2004a; Song et al.,
2006). However, their studies are preliminary since they just
simply compared the averaged results from a limited number
of monthly composite samples. As part of the on-going
Southeastern Aerosol Research and Characterization
(SEARCH) program (Hansen et al., 2003; Zheng et al., 2002),
51 sets of daily observations of organic molecular markers
were obtained (Zheng et al., 2007). While statistically 51 is not
a huge number considered appropriate to assume a normal
distribution, it is still a good trial to gain insight into the
correlation between the contributions of similar source
categories resolved by different models, such as CMB-MM
vs. CMAQ (Park et al., submitted for publication). In this
study, a comparison of CMB-MM and PMF determined source
contributions to PM2.5 at JST is given. Because of the lack of
sufficient molecular marker data for the PMF-MM source
apportionment, two different sets of data were applied
separately to CMB-MM and PMF: CMB-MM used data of
primarily organic tracers plus a couple elements and ions,
while PMF used elements, ions, five gaseous components and
eight thermal-resolved carbon fractions as the input data.
2. Experimental

2.1. Sampling and chemical analysis

2.1.1. CMB-MM
Twenty four-hour ambient PM2.5 samples for speciation of
molecular markers were collected on quartz filters using high-
volume (Hi-Vol) samplers located at Jefferson Street, Atlanta,
GA (JST) during July 3–August 4, 2001 and January 2–31, 2002,
representing the summertime and wintertime, respectively.
The summer samples were collected on quartz fiber filters
(102mm in diameter) using a home-made Hi-Vol dichotomous
virtual impactor developed at California Institute of Technol-
ogy; while the winter samples were collected on quartz fiber
filters (8×10 in.2) with a Thermo Andersen Hi-Vol sampler
(Andersen Instruments, Inc.) (Zheng et al., 2007). These two
periods align with the Eastern Supersites Program (ESP) with
intensive observations (Solomon, 2001). The average tempera-
tures for the sampling periods were 25.1±1.1 °C (summertime)
and 6.8±5.0 °C (wintertime). The JST site, 4.2 km northwest of
downtown Atlanta, is located in a light industrial and
commercial area, and is one of the urban sites in the SEARCH
air monitoring quality network (Hansen et al., 2003). The
analysis of molecular markers has been reported in detail
elsewhere (Zheng et al., 2002, 2006). Briefly, after spiking
deuterated internal standard (IS) mixtures, the quartz filter
was extracted successively undermild sonicationwith hexane
and benzene/isopropyl alcohol (2:1, v/v). Extracts were filtered,
combined, and concentrated to the initial volume of the IS
mixtures spiked. A derivatization step was applied by adding
diazomethane to convert organic acids to their methyl ester
analogues. Target organic compounds in the extracts were
identified and quantified by gas chromatography/mass spec-
trometry (GC/MS) using a Hewlett-Packard (HP) 6890 GC
equipped with a HP mass selective detector (MSD). Robust
quality control procedures were introduced in the organic
analysis, which included: prebaked glassware at 550 °C, used
optima grade or distilled solvents, and performed sensitivity
tests on GC/MSD (Zheng et al., 2007). A standard reference
material of urban dust (SRM1649a) was used to examine the
reproducibility of the analyticalmethod. The recovery range of
PAHs is between 70% (fluoranthene) and 144% (benzo(k)
fluoranthene) of their certified values in SRM1649a. The
average uncertainty for organic markers is 16±4% from
seven replicate analyses of SRM1649a.

In addition to molecular markers, data of a number of
species including OC, EC, aluminum (Al), silicon (Si), and ions
(SO4

2−, NO3
−, and NH4

+) that served as inputs in CMB-MM
modeling were obtained from other filters for PM2.5 taken
simultaneously with a collocated Particulate Composition
Monitor (PCM) sampler (Atmospheric Research and Analysis
Inc., Durham, NC). Different analytical methods were used for
these species, which were thermo-optical reflection (TOR, or
IMPROVE) for OC and EC (Chow et al., 1993), energy dispersive
X-ray fluorescence (XRF) for Al and Si, ion chromatography (IC)
for SO4

2− and NO3
−, and automated colorimetry (AC) for NH4

+ (see
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Hansen et al., 2003, for details). It should be noted that the OC
and EC data were measured with different methods for
ambient samples (TOR) and source profiles (thermo-optical
transmittance, TOT or NIOSH). To minimize the bias arose
from inconsistency in methodology, the TOR OC and EC of
ambient samples were converted to TOT OC and EC using two
sets of conversion equations to represent for summertime and
wintertime (Zheng et al., 2006).

2.1.2. PMF
PM2.5 samples (24-h) for PMF modeling were collected daily
using the PCM sampler at the JST site. In addition to
particulate samples, daily concentrations of five gaseous
components were also obtained by averaging the twenty-
four 1-h average values (Hansen et al., 2003). About 932 daily
observations from January 2000 to December 2002 were
identified as being complete enough to apply PMF. The dataset
for each sample included concentrations of 25 species in
particulate phase (SO4

2−, NO3
−, NH4

+, As, Ba, Br, Cu, Mn, Pb, Se, Ti,
Zn, Al, Si, K, Ca, Fe, OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3)
and five in gaseous species (CO, SO2, NO, HNO3, and NOy),
which served as inputs in the PMF model. The filter-based
measurements for particulate species included PM2.5 mass,
OC, EC, water-soluble ions, and trace elements; while the
continuous or semicontinuous measurements were made for
the five gaseous species. The detection approaches of these
components also have been described elsewhere (Hansen
et al., 2003). The estimated analytical uncertainties and
detection limits for OC, EC, gaseous species, trace elements,
and ions were also obtained (Hansen et al., 2003).

2.2. CMB-MM and PMF modeling

Receptor modeling for particulate matter in the atmosphere
has been discussed in detail by Hopke (2003), and is briefly
discussed here. At a given receptor site, a mass balance
equation accounting for all conserved chemical species from p
independent sources in a given sample can be expressed as
follows:

xij ¼
Xp

k¼1

gikfkj þ eij ð1Þ

where xij is the concentration of the jth species measured in
the ith sample; gik is the mass contribution from the kth
source to the ith sample; fkj is the fractional concentration of
the jth species in the kth source; eij is residual associated with
the ambient concentration of the jth species in the ith sample;
p is the total number of the contributed sources. The equation
in matrix form is:

X ¼ GFþ E ð2Þ

where X is an n×m data matrix with n measurements and m
number of elements; G is an n×p source contribution matrix
with p sources; F is a p×m source profile matrix; and E is an
n×m matrix of residuals.

CMB-MM is a single-sample receptor model to solve Eq. (1)
if emission source profiles (i.e. p and fkj) are known. In this
case, the only unknowns are the mass contributions of each
source in each sample, gik. On the other hand, if the source
profiles are not known and the number of samples is large
enough, Eq. (2) can then be solved by PMF, which is a factor
analysis-based technique that identifies structures in the
dataset. For the model analysis, CMB-MM results were
calculated using CMB7.0 (Watson et al., 1990) while Positive
Matrix Factorization (PMF2) (Feb. 1997) vers. 4.2 was performed
to solve PMF.

2.2.1. CMB-MM
The source apportionment to fine organic carbon for PM2.5
samples collected at JSTduring July 3–August 4, 2001and January
2–31, 2002 was performed using CMB-MM. The candidates of
fitting species for CMB-MM include 32 molecular markers along
with EC, Al, and Si. The 32molecularmarkers are: nine n-alkanes
(with the number of carbon atom between 25 and 33), seven
hopanes and steranes (20S&R-5α(H),14β(H),17β(H)-cholestanes,
20R-5α(H),14α(H),17α(H)-cholestane, 20S&R-5α(H),14β(H),17β(H)-
ergostanes, 20S&R-5α(H),14β(H),17β(H)-sitostanes, 22,29,30-tris-
norneohopane, 17α(H),21β(H)-29-norhopane, and 17α(H),21β(H)-
hopane), three resin acids (8,15-pimaradien-18-oic acid, pimaric
acid, and isopimaric acid), six polycyclic aromatic hydrocarbons
(PAHs) (benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(e)
pyrene, indeno(1,2,3-cd)fluoranthene, indeno(1,2,3-cd)pyrene,
and benzo(ghi)perylene), two unsaturated fatty acids (hexadece-
noic acid and octadecenoic acid), and five other organic
compounds (7H-benz(de)anthracen-7-one, nonanal, cholesterol,
propionylsyringol, and levoglucosan). For fitting species with
“missingdata” in theambientdata (e.g., due tonomeasurements
or measurements below detection limits), they would not be
selected in the input file.

Seven primary source profiles were selected based on the
study by Zheng et al. (2002) in the Southeastern US, including
emissions from diesel-powered vehicles (Hildemann et al.,
1991; Schauer et al., 1999a), combined catalyst and noncata-
lyst-equipped gasoline powered vehicles (Schauer et al., 2002),
wood combustion (Fine et al., 2002), paved road dust (Schauer,
1998), meat cooking (Schauer et al., 1999b), vegetative detritus
(Rogge et al., 1993a), and natural gas combustion (Rogge et al.,
1993b). Two source profiles, wood combustion and paved road
dust, were reconstructed by Zheng et al. (2002) to account for
local variability in source profiles. The primary particulate
sources contain specific molecular markers, such as levoglu-
cosan and resin acids for wood combustion, hopanes and
steranes for motor vehicle emissions, Al and Si for paved road
dust, odd-numbered alkanes for vegetative detritus, and
cholesterol for meat cooking. It is difficult to distinguish
between diesel and gasoline engine exhausts merely based on
hopanes and steranes for such components exist in lubricat-
ing motor oil used in both types of vehicles. However, if
combinedwith EC, diesel- and gasoline-originated sources can
be better separated since the proportion of EC in particles from
diesel engines is higher than that from combined catalyst/
non-catalyst-equipped gasoline spark-ignition engines
(Schauer et al., 1999a, 2002). From CMB-MM, the outputs are
concentrations of fine organic carbon contributed from the
emission sources resolved. Ions including sulfate, nitrate, and
ammonium are from primary or secondary origin. According
to the primary OC identified from CMB and the ratios of each
ion to OC in source profiles, the amount of ions with primary
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origin could be calculated. Ions of secondary origin are thus
the difference between the measured ambient ionic concen-
trations and the calculated primary ionic concentrations.
Unexplained organic carbon in CMB-MM was converted to
organic matter using a factor of 1.7 (Nelson and Sommers,
1996) to include molecules other than carbon such as H, O, N,
and S.

2.2.2. PMF
Error estimation for the input data in PMFmodeling is required
to be chosen carefully to reflect the quality and reliability of
each data point. By adjusting the corresponding error esti-
mates, the weight of missing and below-detection-limit data
in the solution can be decreased. There were missing and
below-detection-limit values for different chemical species in
four samples in the present study. Missing data were replaced
by the geometric means of corresponding elements and four
times of geometric mean as the corresponding error estimates
(Polissar et al., 1998). Half of the detection limit was used for
the values below the detection limit and 5/6 of the detection
limit was used for the corresponding error estimate (Polissar
et al., 1998). Considering the high uncertainty of gaseous
species inmeasurements, we decreased the weight of gaseous
species in model fit by assigning the uncertainty as 4 times
their measured concentrations (Kim et al., 2005).

The mass concentration of PM2.5 for each sample was
regressed against the factor scores obtained from PMF using
multiple linear regression (MLR) (Xie et al., 1999). Uncertainties
introduced by the measurement matrix, which is an unex-
plainedportionof themeasuredvariationsnot capturedbyPMF,
werealso taken into account by regressing the factor scores only
to the explained portion of the mass concentrations. The
regression coefficients were used to convert the factor profiles
and contributions to physically reasonable unit of μg m−3. PMF
results for the overlapping periods as in CMB-MM (July 2001 and
January 2002) were extracted for comparison.
3. Results and discussion

3.1. Source apportionment by CMB-MM

Detailed PM2.5 mass contributions for the seven primary
sources resolved by CMB-MM as well as ion concentrations of
secondary sulfate, nitrate, and ammoniumhave been reported
elsewhere (Zheng et al., 2007). Briefly, contributions from the
primary sources identified plus secondary aerosol formation
accounted for 94% and 120% on average of themeasured PM2.5
mass at JST in July 2001 and January 2002, respectively.
Dominant sources contributed to total identified PM2.5 varied
by season, with secondary sulfate (40%), other OM (25%), and
secondary ammonium (17%) dominating in July 2001, and
wood combustion (18%), other OM (18%), gasoline exhaust
(16%), secondary sulfate (13%), secondary nitrate (11%), and
secondary ammonium (9%) dominating in January 2002.

3.2. Source apportionment by PMF

Nine source factors were resolved by PMF from the 3-year
dataset (January 2000 through December 2002) at the JST site
(Liu et al., 2006). Based on their compositions, these factors are
linked to actual emission source categories including diesel
exhaust, gasoline exhaust, wood combustion, road dust, coal
combustion, sulfate factor, nitrate factor, industry 1 (cement),
and industry 2 (Zn). Among these nine source profiles, the
sulfate factor is dominated by high concentrations of sulfate
and ammoniumwhile the nitrate factor has higher nitrate and
the associated ammonium. The wood combustion factor
contains high concentrations of EC, OC and K. For the diesel
and gasoline exhaust factors, EC and OC are dominant, with
the presence of some soil dust-related elements, likely due to
road dust. The motor vehicle exhaust factors are also
characterized by enriched gaseous species such as CO, NO,
and NOy. Coal combustion has high concentrations of sulfate,
EC, OC, and Se, while road dust has high concentrations of Al,
Ca, Fe, K, Si and Ti. Contributions from the nine PMF resolved
sources accounted for 77% and 93% on average of measured
PM2.5 mass concentrations in July 2001 and January 2002,
respectively. Sulfate, diesel exhaust, and wood combustion
were major contributors to PM2.5 in July 2001 accounting for
10–41% of measured PM2.5 mass. However, in January 2002,
wood combustion, nitrate, sulfate, gasoline exhaust, and
diesel exhaust (in descending order) dominated, accounting
for 10–32% of measured PM2.5 mass.

3.3. Comparison of source apportionment results

3.3.1. Effect of including gaseous components and thermal-
resolved carbonaceous fractions on PMF simulated results
The inclusion of gaseous species and thermal-resolved carbo-
naceous fractions as additional constraints for PMF model fit
has been suggested (Kimet al., 2005; Liu et al., 2006). As a result,
the resolution power of PMF is thought to be enhanced and the
split of diesel exhaust and gasoline exhaust can be achieved
(Liu et al., 2006). The source apportionment results from two
PMF approaches using different input species were compared
in a study by Liu et al. (2006). Herewepresent a summary of the
results comparison (Table 1). When the gas phase and carbon
fractions were included as input species in PMF (assigned as
PMF-1 in Table 1), among the eight resolved sources, mass
contributions from three sources of wood combustion, road
dust, and nitrate increased while that from four sources of
sulfate, coal combustion, industry factor 1 (cement), and
industry factor 2 (Zn) decreased, regardless of the seasonal
change (Table 1). Contributions from motor vehicle exhaust,
however, showed an increase in the summer month while a
decrease in the winter month. The inclusion of carbonaceous
fractions and gas phase components in PMF (PMF-1) aids
differentiating diesel and gasoline exhausts, which could not
be achieved in the earlier PMF source apportionment practice
using bulk OC and EC (PMF-2); however, it should be noted that
the unapportioned PM mass is larger using PMF-1 than using
PMF-2 in both seasons, accounting for 2–3% more of the total
mass. Themajor contributors to the increase in unapportioned
PM2.5 may be sulfate (2.33 μg m−3 or 20% less) in summer and
motor vehicle exhaust (0.53 μg m−3 or 16% less) and sulfate
(0.47 μg m− 3 or 18% less) in winter. On the contrary,
consistently higher mass concentrations from wood combus-
tion were estimated by PMF-1 than by PMF-2 in either summer
(1.13 μgm−3 or 110%more) or winter (1.07 μgm−3 or 34%more).



Table 1 – Comparison of source contributions to PM2.5 (μg m−3) in two different PMF methods

Resolved source July 2001 January 2002

PMF-1a PMF-2b Difference c % Difference PMF-1 PMF-2 Difference % Difference

Sulfate 9.12±4.81 11.45±5.71 −2.33 −20 2.12±0.71 2.59±0.83 −0.47 −18
Nitrate 0.65±022 0.56±0.20 0.09 15 2.30±1.26 2.02±1.05 0.28 14
Diesel exhaust 2.56±1.14 – – – 1.28±0.71 – – –
Gasoline exhaust 0.28±0.26 – – – 1.54±1.21 – – –
Motor vehicle exhaustd 2.84±1.20 2.05±1.27 0.79 38 2.82±1.26 3.35±2.10 −0.53 −16
Wood combustion 2.15±1.63 1.02±0.76 1.13 110 4.23±2.82 3.16±1.61 1.07 34
Road dust 1.12±1.24 0.70±0.89 0.42 61 0.26±0.30 0.16±0.18 0.10 62
Coal combustion 0.33±0.29 0.64±0.52 −0.31 −49 0.23±0.22 0.43±0.35 −0.20 −46
Industry factor 1 (cement) 0.73±0.67 0.99±0.76 −0.26 −27 0.22±0.19 0.44±0.28 −0.22 −50
Industry factor 2 (Zn) 0.09±0.07 0.28±0.21 −0.19 −69 0.18±0.10 0.49±0.27 −0.31 −63
Unapportioned 5.07±3.47 4.38±3.16 0.69 16 0.92±3.35 0.64±1.20 0.28 43

a PMF-1, PMF with five gaseous components and eight thermal-resolved carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3 based on
TOR carbon analysis protocol (Chow et al., 1993, 2001).
b PMF-2, PMF with only two carbon fractions and no gaseous species.
c The difference is calculated by subtracting the average contributions for PMF-2 from that for PMF-1.
d Motor vehicle exhaust is defined as the sum of diesel exhaust and gasoline exhaust.
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It is still unclear why the inclusion of gas phase and
carbonaceous fractions leads to higher proportions of unde-
termined mass (Liu et al., 2006). While a possible reason may
be the additional constraints, which reduce the chance of
incorrect apportionment of the unresolved PM2.5 mass to the
resolved sources. In order to examine this hypothesis, we
compared the proportional data of three important compo-
nents of OC, EC, and SO4

2− in themajor source profiles resolved
by CMB-MM, PMF-1, and PMF-2 from the previous studies (Liu
et al., 2006; Zheng et al., 2007), and the results are summarized
in Table 2. Similar source profiles developed for CMB analysis
Table 2 – Percentage of OC, EC, and SO4
2− to PM2.5 mass (%) in s

PMF in the present study

Component Model Motor vehicle
exhaust

Diesel
exhaust

Gasoline
exhaust c

OC PMF-1b – 25.7 58.8
PMF-2c 68.1 – –
CMB-MM – 30.4 47.9
CMB-Regulard 58.7 – –

EC PMF-1 – 25.7 29.4
PMF-2 28.3 – –
CMB-MM – 40.5 1.2
CMB-Regular 37.2 – –

SO4
2− PMF-1 – 8.9 6.6

PMF-2 1.8 – –
CMB-MM – 1.0 0.4
CMB-Regular 2.2 – –

OC+EC+SO4
2− PMF-1 – 60.3 94.8

PMF-2 98.2 – –
CMB-MM – 61.2 49.5
CMB-Regular 98.1 – –

Similar source profiles developed for CMB modeling with traditional spec
a Road dust, paved road dust profiles were selected for CMB-MM (Zheng
b PMF-1, PMF using eight carbon fractions and five gaseous species (Liu e
c PMF-2, PMF using bulk OC and EC (Liu et al., 2005).
d CMB-Regular, CMB with traditional species (Chow et al., 2004). All selec
profiles as listed in Table 3 of the paper.
e NV: negative value.
f UDL: under detection limit.
of the traditional species (CMB-Regular) in the Big Bend
Regional Aerosol Visibility and Obvervational (BRAVO) study
(Chow et al., 2004) were also included for comparison purpose.
As can be seen, for the SO4

2− factor, with the split between
diesel and gasoline exhausts, the proportion of SO4

2− in each of
the PMF resolved PM2.5 profiles of diesel exhaust, gasoline
exhaust, and coal combustion increased, while that in wood
combustion decreased. Therefore, ambient SO4

2− mass would
be apportioned to six sources in PMF-1 instead of five in PMF-2,
whichmight result in the reduction in contributions of SO4

2− to
PM2.5 when PMF-1 was employed. For the wood combustion
ome important source profiles resolved by CMB-MM and/or

Wood
ombustion

Road
dust a

Coal
combustion

Industry 1
(cement)

Cooking SO4
2−

factor

64.5 37.3 22.1 52.1 – 3
76.6 37.6 41.5 4.5 – 5.7
74.9 13.1 – – 56.6 –
64.5 13.3 27.2 12.8 86.7 –
32.8 2.8 17 NVe – NV
4.8 3.3 14.2 18.2 – 0.1
8.2 0.9 – – UDLf –

15.8 2.4 1.4 3 10.2 –
0.1 16.4 40.9 20.2 – 70.9

11.5 26.2 29.7 17.6 – 65.5
0.4 1.2 – – UDL –
2.4 0.5 28.7 31.4 0.4 –

97.4 56.5 80 72.3 – 73.9
92.9 67.1 85.4 40.3 – 71.3
83.5 15.2 – – 56.6 –
82.7 16.2 57.3 47.2 97.3 –

ies (Chow et al., 2004) are included for comparison.
et al., 2002) and CMB-Regular (Chow et al., 2004).
t al., 2006).

ted source types except for road dust are averaged composite source
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source, in spite of the relatively minor changes in OC
proportion (64.5% in the PMF-1 resolved profile and 76.6% in
the PMF-2 resolved profile), the EC fraction increased drama-
tically from 4.8% in the PMF-2 resolved profile to 32.8% in the
PMF-1 resolved profile. It is reasonable to infer that the
increase in contributions from wood combustion for both
seasons is mainly due to the increase in EC proportion in the
source profile. Significant changes can also be seen in OC
proportions for coal combustion and industry 1 (cement), and
in EC proportions for industry 1 (cement) (Table 2). In terms of
the diesel and gasoline exhaust sources, the summed propor-
tion of EC in the PMF-1 resolved profile doubles that in the
PMF-2 resolved profile of motor vehicle exhaust; however, the
summed proportion of OC in the PMF-1 resolved profile
increases by around 25% as compared with that in the PMF-2
resolved profile. Seasonal variability in contributions from
motor vehicle exhaust is merely found for PMF-2 (3.35 μg m−3

in winter while 2.05 μg m−3 in summer) but not for PMF-1.

3.3.2. Comparison of source contributions by CMB-MM and PMF
The foundation for the intercomparison of CMB-MM and PMF
is that a number of emission sources resolved by both
methods are similar and can be compared. In this study, the
source categories/factors shared by both CMB-MM and PMF
include diesel exhaust, gasoline exhaust, wood combustion,
road dust, sulfate, and nitrate. It should be noted that the
sulfate and nitrate sources from the CMB-MM model are the
measured values after subtracting the summed mass of
sulfate and nitrate directly emitted from the selected primary
sources (calculation was made based on their proportions to
PM mass in each source profile). The comparison of these ion
sources from PMF with that from CMB-MM is really just a
comparison of the PMF result with the measured data.
Therefore, the method comparison in this study will be
focused on the sources of diesel exhaust, gasoline exhaust,
wood combustion, and road dust. In addition, secondary
organic aerosol (SOA) estimated from PMF and CMB-MM will
be compared and discussed, as it is a very important
component in the total OC (or organic matter, OM).

3.3.2.1. Diesel exhaust. Contributions from diesel exhaust
resolved by PMF in general were higher than by CMB-MM for
both seasons, especially for summer (by a factor of 2.6 on
average) (Figs. 1 and 2). Daily variability of diesel exhaust was
different, as reflected by the poor correlations (squared
correlation coefficient (R2) b0.02) (panel (a) of Fig. 3). The
source profile of diesel exhaust used in CMB-MM is character-
ized by EC, Al, Si, and a number of n-alkanes, hopanes and
steranes, while the PMF resolved source profile of diesel
exhaust is characterized by the eight fractions of EC and OC
determined by the IMPROVE method. In addition, the gaseous
species are also characteristic of diesel exhaust. EC is the key
species in bothmethods. The OC/EC ratio in the diesel exhaust
profile used in CMB-MM is 0.75 (Schauer et al., 1999a), similar
to that resolved by PMF (0.88) (Kim et al., 2003) and to that
measured in diesel exhaust for PM10 (0.72) (Cadle et al., 1999).
For the diesel exhaust profile resolved by PMF, the OC/EC ratio
is 1.0, slightly higher than these values. However, this
different scale is not large enough to explain the huge
difference between the CMB-MM and PMF results. We
observed that there was a significant amount of SO4
2− (8.9%

of the total mass) in the PMF resolved profile, which is much
higher than that (1% of the total mass) in the CMB-MM profile
(Table 2). Sulfate is considered as a secondary product
converted from its precursor SO2 after emitted to the atmo-
sphere. Instead, the CMB-MMmodel only predicts primary PM
contributions from diesel exhaust. It is then inferable that the
much higher diesel exhaust simulated by PMF than by CMB-
MM in July may be due in part to that PMF estimates both
primary and secondary PM2.5 that associated with diesel
exhaust while CMB-MM estimates only primary particulate
matter released by diesel engines. It is believed that photo-
chemical reactions are much more active in summer than in
winter, resulting in correspondingly higher levels of PM2.5
from PMF resolved diesel exhaust in the summertime.

3.3.2.2. Gasoline exhaust. Unlike diesel exhaust, PM2.5 from
gasoline exhaust estimated by CMB-MM was higher than by
PMF. In addition, both methods estimated much higher
contributions in January 2002 than in July 2001, indicating a
seasonal impact on this source (Figs. 1 and 2). Recent studies
have shown that gasoline spark-ignition vehicles emit more
particulates under poor combustion conditions (Schauer et al.,
1999a, 2003). Cold starts at low temperature (e.g., in winter) are
one of these combustion conditions. The difference in
emissions of EC and high molecular weight PAHs such as
benzo[ghi]perylene (BgP) and coronene can be 10 times greater
from poor combustion conditions as compared to that from
more complete ones (Schauer et al., 1999a). However, Schauer
et al. (2003) also reported that the emissions of hopanes under
cold-start conditions may be comparable to those under hot-
start or steady-state driving conditions. Similar results have
been found by Fine et al. (2004) in an investigation on ultrafine
organic particulate in Los Angeles basin. The higher contribu-
tions from gasoline exhaust but not from diesel exhaust in
wintermay be because of the different constraints in CMB-MM
source apportionments. For gasoline exhaust, there are more
molecular markers including hopanes, steranes, and PAHs as
constraints than diesel exhaust, while the latter puts more
weight on EC.

Gasoline exhaust contributions estimated by CMB-MM and
PMF agreed fairly well when all of the summer andwinter data
were included (R2=0.49, n=0.39). Poor correlations were found
when only summer (R2=0.04, n=20) or winter (R2=0.20, n=19)
data were included. Compared to the CMB-MM gasoline
exhaust profile, the PMF resolved profile has much higher EC
proportion (29.4% vs. 1% of the total mass). The profile of PMF
resolved gasoline exhaust is very similar to that of diesel
exhaust, though with lower EC and different relative con-
tributions of OC, SO4

2−, NH4, and gaseous species, which have
multiple origins. For CMB-MM, the gasoline exhaust profile
has significantly different relative contributions of EC,
hopanes and steranes, and PAHs compared to the diesel
exhaust profile. More importantly, hopanes and steranes are
characteristics of motor vehicle emissions, which are unlikely
to be influenced by other origins. Again, significant amount of
sulfate ion also was found in the PMF resolved gasoline
exhaust profile (6.6% of the total mass) (Table 2), suggesting
that PM2.5 from gasoline exhaust estimated by PMF may be a
mix of primary and secondary origins.



Fig. 1 – Comparison of CMB-MM and PMF-1 for daily variations in contributions from eight sources to PM2.5 at JST in July 2001.
PMF-1, PMF using eight carbon fractions and five gaseous species.

296 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 4 ( 2 0 0 8 ) 2 9 0 –– 3 0 2
The eight-carbon-faction PMF (PMF-1) with an important
advantage over the regular PMF (PMF-2) is the capability of
splitingdiesel andgasoline exhausts. Inorder to clarifyhowwell
the twomethods correlate to each other, one step is to combine
the diesel and gasoline exhaust sources resolved by PMF-1
before compared with the unresolved mobile source by PMF-2
(Liu et al., 2006). This also is applicable to the comparisonofCMB
and PMF. In this study, the CMB-MMmobile source results were
compared with that of PMF-1 and PMF-2, respectively, after
combining the diesel and gasoline exhaust sources (panel (c) of
Fig. 3 and panel (a) of Fig. 4). The CMB-MM combined mobile
source has improved correlation with the PMF-1 combined
mobile source (R2=0.12, n=39), as compared with the diesel
exhaust source (R2=0.003, n=39); while the correlation between
the combined sources is poorer than that between the gasoline
exhaust source (R2=0.49, n=39). However, when only the winter
data are included, the CMB-MM combinedmobile source shows
enhanced correlationwith thePMF-1 combined source (R2=0.30,



Fig. 2 – Comparison of CMB-MM and PMF-1 for daily variations in contributions from eight sources to PM2.5 at JST in January
2002.
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n=19), as compared with the single source of diesel exhaust
(R2=0.02, n=19) or gasoline exhaust (R2=20, n=19). A recent
source apportionment study using themolecularmarker-based
PMF model (PMF-MM) also has reported that the PMF-MM
mobile source factor has poor correlation with both the CMB
diesel and gasoline exhausts but has reasonable correlation
with a combination of diesel, gasoline, and smoker sources
(Jaeckels et al., 2007). It is quite surprised that the CMB-MM
combined mobile source has quite good correlation with the
PMF-2 combined mobile source (R2=0.60, n=39) (panel (a) of
Fig. 4). It can be seen that the proportion of sulfate is quite low in
the PMF-2 motor vehicle exhaust (1.8% of the total mass)
(Table 2), indicating that the PMF-2 motor vehicle exhaust
contains less secondary PM2.5 as compared with the PMF-1
motor vehicle exhaust. Jaeckels et al. (2007) have suggested that
the CMB-MM source apportionment estimate of a combined
motor vehicle source is reasonable, after comparing the PMF-
MM result with the measured concentrations of the molecular



Fig. 3 – Comparison of the PM2.5 source contributions estimated by CMB-MM and PMF-1: (a) diesel exhaust, (b) gasoline
exhaust, (c) motor vehicle exhaust (diesel+gasoline), (d) wood combustion, (e) road dust. The linear regression lines are
based on all data.
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marker of mobile source. To this end, the inclusion of the eight
carbon fractionsand five gas species inPMF-1maynot be able to
reasonably apportion primary motor vehicle exhaust from
ambient PM2.5 data as CMB-MM does.

3.3.2.3. Wood combustion. The daily distribution pattern for
PM2.5 from wood combustion differed significantly between
CMB-MM and PMF especially in the summer season (Fig. 1). In
July, only four out of 24 samples had wood combustion-
originated PM2.5 detected at a very low level (less than 0.66 μg
m−3), resulting in an extremely low average impact. In
contrast, PMF-estimated mass concentrations from wood
combustion fluctuated between undetectable and 5.37 μg
m−3, averaged 2.1 μg m−3, a factor of 20 higher than by CMB-
MM. It is noticed from Fig. 1 that the level of wood combustion
exhaust started to go up on July 9th (no sample was taken
between July 4th and 8th for PMF analysis), and stayed at a
relatively high level (between 2.3 and 5.4 μg m−3) until the end
of July (July 24th and onward). On the contrary, estimated
contributions of wood combustion by both methods were in
better agreement for the winter data (R2=0.27, n=19) (panel (d)
of Fig. 3), with lower estimates by CMB-MM than by PMF.

The large difference for July samples may be linked to the
difference in source profiles. For CMB-MM, wood combustion
profile is characterized by enriched EC and OC as well as a
number of molecular markers such as levoglucosan and resin
acids. In this study, levoglucosan served as a key element for
apportioning wood combustion. The quantification of levo-
glucosan is constrained by the detection limit. The wood
combustion source can only be resolved when levoglucosan is
detectable (the detection limit for levoglucosan by MM
analysis is 5.3 ng m−3). The lowest detectable concentration
of levoglucosanwas 14.2 ngm−3 from the sample taken on July
26th, leading to an apportioned PM2.5 contribution of 0.15 μg
m−3 from wood combustion exhaust. For most of the July 2001
samples, levoglucosanwas undetectable, which resulted in no
contribution from wood combustion. For PMF, the resolved
wood combustion profile is characterized by high OC, EC, and
K (Watson and Chow, 2001), of which the sources can be
multiple. Especially for some early July samples, they may be
influenced by the July 4th fireworks, which is also a source for
high K (Kim et al., 2003; Polissar et al., 2001). This might
partially contribute to the high levels of wood combustion
exhaust resolved by PMF in some July samples in the present
study. The CMB-MM wood combustion results were also
compared with the PMF-2 results (panel (b) of Fig. 4). Similarly,
the CMB-MM wood combustion source has better correlation
with the PMF-2 wood combustion source (R2=0.51, n=39) than
with the PMF-1 one (R2=0.34, n=39). Based on the comparison
between CMB-MM and PMF-2, it shows that PMF-1 tends to
have a high bias and the CMB-MM estimated wood combus-
tion contribution might be closer to the real situation.
Fig. 4 –Comparison of the PM2.5 source contributions estimated
by CMB-MM and PMF-2 (PMF using bulk OC and EC): (a) motor
vehicle exhaust (diesel+gasoline), (b) wood combustion, (c) road
dust. The linear regression lines are based on all data.
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3.3.2.4. Road dust. Contributions from road dust resolved by
PMF were much higher than by CMB-MM, with 1.1 and 0.4 μg
m−3 on average for PMF and CMB-MM, respectively. Both CMB-
MM and PMF-estimated road dust contributions were much
lower in January 2002 than in July 2001 (Figs. 1 and 2). The road
dust source could not be resolved for many January 2002
samples by CMB-MM, which may be due to very low
concentrations of Al and Si concentrations in the ambient
samples. PMF-1 results show higher levels of the so called
“road dust” than CMB-MM. It is probably because that “road
dust” in PMF includes all types of airborne dust from unpaved
roads, construction sites, and wind-blown soil dust (Kim et al.,
2003), while CMB-MMapportions base only onAl and Si in a set
profile of paved road dust, which may not be always
representative of all road dust. Although PMF estimates higher
road dust contribution than CMB-MM, the daily variability of
road dust concentrations by CMB-MM and PMF gave similar
trends (R2=0.93, n=39) (Fig. 3), which may be due to the
similarity of key tracers (Al and Si) in road dust source profile
used in CMB-MM and resolved by PMF-1. It should be stressed
that a regression analysis with a few high days in winter
shows that road dust is not really a good metric of agreement
(R2=0.67, n=19) (Fig. 2 and panel (c) in Fig. 4). It may be due to
the very low concentrations of Al and Si, which resulted in the
road dust contributions not resolved by CMB-MM for many
winter samples. However, since both PMF and CMB-MM
resolved road dust concentrations in winter are low (b0.5 μg
m−3), the data did not affect much the good correlation
between PMF and CMB-MM results when the summer and
winter data were combined (R2=0.93, n=39). Higher correla-
tions of road dust estimates were also found between CMB-
MM and PMF-2 (R2=0.97, n=39) (panel (c) of Fig. 4). From
Table 2, it can be seen that sulfate fraction is in high
proportion in the PMF-2 road dust profile (26.2% of the total
mass) than in the PMF-1 road dust profile (16.4% of the total
mass), resulting in higher mass contributions from the PMF-1
road dust source than from the PMF-2 road dust source.
Fig. 5 – Comparison of PM2.5 mass concentrations from sec
3.3.2.5. SOA estimates. It is of great interest in estimating
SOA with different approaches, such as CMB-MM (Zheng et al.,
2002), PMF-MM (Shrivastava et al., 2007), PMF analysis of
traditional species data (PMF-regular) (Pekney et al., 2006), EC-
tracer method (Polidori et al., 2006), and factor analysis of
aerosolmass spectrometer (AMS) data (Zhang et al., 2005). CMB-
MM is an indirect method for SOA estimation defined as the
difference between the measured ambient OC and the OC
apportionedbyCMB-MMtoprimary sources. PMF-regular also is
an indirect method to estimate SOA by considering the OC
portion in secondary sulfate as SOA (Pekney et al., 2006). In this
study, the OC from both of the PMF resolved secondary sulfate
andnitrate factorswere calculated basedon their proportions to
thePMmass, and then combined toestimate theSOA.Asshown
in Fig. 5, the CMB-MM estimated SOA has good correlation with
both of the PMF-1 estimated SOA (R2=0.43, slope=7.42, n=39)
and the PMF-2 estimated SOA (R2=0.50, slope=3.18, n=39). As
can be seen from the slope, CMB-MM estimates much higher
SOA than PMF-1 and PMF-2, by a factor of 7.42 and 3.18,
respectively. Pekney et al. (2006) also reported that only half as
muchOCtoSOAfromthesulfate factorbyPMF-2as thePMF-MM
analysis by Shrivastava et al. (2007). The difference in SOA
estimates by CMB-MM and PMF-1/PMF-2 may be due to: (1) the
unresolved primary OC that would attribute to the CMB-MM
SOA (high bias) and (2) the SOA from the resolved primary
sources that have not been included in the PMF-1/PMF-2 SOA
(low bias), as indicated by the significant sulfate portions in
some PMF resolved source profiles shown in Table 2.
4. Conclusions

A comprehensive comparison of CMB-MM and PMF in the
current study shows that the PM2.5 mass contributions from
road dust, gasoline exhaust, and wood combustion are in fair
to good agreement between the CMB-MMand PMF results. The
CMB-MM diesel exhaust has poor correlation with the PMF
ondary organic aerosol estimated by CMB-MM and PMF.
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diesel exhaust. The discrepancy in source apportionment
results between CMB-MM and PMFmay be due to the different
source compositions or tracers in their source profiles.
Basically, if there were more overlap in the compounds used
in each type of analysis, better agreement may be expected.
However, this may also mask errors in the results. There are
still fundamental differences between PMF and CMB-MM, as
evidenced shown by Jaeckels et al. (2007). Our study also
shows that the CMB-MM results are in better agreement with
the PMF analysis of traditional speciation data than with the
eight-carbon-fraction PMF analysis.

CMB-MM is a powerful tool to apportion sources character-
ized by unique molecular markers such as wood combustion
and meat cooking. It performed fairly well for motor vehicle
exhaust. The split between diesel and gasoline exhaust might
be improved if thermal-resolved carbonaceous fractions were
able to be incorporated into molecular marker-based source
profile in the source tests. For PMF, the inclusion of gaseous
species as well as carbonaceous fractions gives more con-
straints to model fits and helps to split diesel exhaust and
gasoline exhaust estimates, though it may not be as powerful
for apportioning primary motor vehicle exhaust from the
ambient PM2.5 data as CMB-MM.
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