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Abstract

Two commonly used receptor models, positive matrix factorization (PMF) and chemical mass balance (CMB), are

applied to 3-year PM2.5 data at two urban sites (Atlanta, GA and Birmingham, AL) and two rural sites (Yorkville, GA and

Centreville, AL). Source apportionment results using the two receptor models are analyzed and compared. Both models

are able to identify major sources at all sites, though the degree of agreements and correlations between source impacts

estimated by PMF and CMB varies depending on sources and receptor sites. Estimated contributions of secondary

inorganic particles are the most comparable and highly correlated. The lesser comparability and correlations of estimated

contributions of other sources (mostly primary) may be attributed to several factors. Resolved source profiles in PMF have

more processed (or aged) characteristics resulting in part from atmospheric mixing and condensation of oxidized

compounds, whereas source profiles used in CMB are obtained from measurements of emission sources with minimum

amount of atmospheric processing. The PMF profiles vary from site to site; both atmospheric processing and local source

variability contribute. In comparison, the CMB profiles obtained from a limited number of emission measurements may

not be locally representative even if they are regionally representative. The omission of possible known or unknown

sources due to lack of proper source profiles or proper ‘‘marker’’ species may also cause the differences in the source

apportionment results. In addition, the implication for PM time-series health study is discussed based on the results from

this study.
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1. Introduction

Particulate matter has been linked with negative
cardiovascular and respiratory health outcomes,
including effects leading to premature mortality
(Metzger et al., 2004; Peel et al., 2004; Peters et al.,
2001; Pope et al., 2002). In addition, PM2.5 contributes
to visibility impairment and acid deposition (US-EPA,
.
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2002; Watson, 2002). As of December 2006, it has
been reported that the 98th percentile of 24h PM2.5

concentrations in 12 counties in the southeastern
United States (US) are exceeding the 24h PM2.5

National Ambient Air Quality Standards (NAAQS)
of 35mgm�3, suggesting that more than 1.5 million
people in the southeast are exposed to elevated levels
of PM2.5 (www.epa.gov/air/data/). It is important to
understand which emission sources contribute to the
elevated daily PM2.5 levels for developing effective
control strategies. This places increased emphasis on
correct daily source apportionments to such high
levels vary by location and time, and epidemiologic
studies suggest that such sources have different health
outcomes (Laden et al., 2000; Mar et al., 2000; Sarnat
et al., 2006).

Receptor models, which attribute observed con-
centrations to sources through statistical and/or
meteorological interpretation of data, often yield
useful insights on the sources of aerosols. Receptor
models are based on mass conservation (or balance)
of species. The general mass balance form is
(Hopke, 2003)

xij ¼
XN

k¼1

gikf kj þ eij ; i ¼ 1; . . . ;m,

j ¼ 1; . . . ; n; k ¼ 1; . . . ;N, (1)

where xij is the ambient concentration of species j in
sample i, fkj is the mass fraction (or factor loading)
of species j in source k, gik is the source contribution
(or factor scores) of source k in sample i, and eij is
error.

Receptor modeling can be categorized into
two different types based on whether PM2.5

chemical characteristics from emission sources are
required to be known prior to source apportion-
ment (Hopke, 2003). Chemical mass balance (CMB)
requires a priori knowledge of major sources (N)
and their emission characteristics (f) in the study
area, while others (i.e., factor analysis and positive
matrix factorization (PMF)) require only ambient
measurement data to perform source apportion-
ment. Both CMB (i.e., known sources) and PMF
(i.e., unknown sources) have been widely used
for understanding of source impacts on ambient
PM2.5 levels. Both CMB and PMF use a least-
squares weighted (by input data uncertainties)
fitting through minimizing the differences bet-
ween measured and estimated concentrations. With
known source profiles, CMB seeks to minimize
the w2 value,

w2 ¼
Xn

j¼1

ðxj �
PN

k¼1f jkgkÞ
2

s2xj þ
PN

k¼1s
2
f jk

g2
k

2
4

3
5, (2)

where sxj(mgm
�3) is the uncertainty on the ambient

concentration of species j, and sf jk
is the uncertainty

in the fraction of species j in the source k profile
(Watson et al., 1984). With unknown source
profiles, PMF minimizes the Q value,

Q ¼
Xm

i¼1

Xn

j¼1

xij �
PN

k¼1gikf jk

sij

 !2

, (3)

where xij is the ambient concentration of species j in
sample i, fkj is the factor loading of species j in
source k, gik is the factor score of source k in sample
i, and sij is the uncertainty of ambient concentration
of species j in sample i (Paatero and Tapper, 1993,
1994). PMF requires a substantial number of
ambient samples to resolve source factors (i.e.,
matrix g) and their profiles (i.e., matrix f), whereas
CMB can be applied to any number of samples since
the source profiles are already known.

The Southeastern Aerosol Research and Char-
acterization (SEARCH) study provides a consistent,
rich, and long-term dataset of ambient PM2.5

chemical characteristics in the southeastern United
States (Edgerton et al., 2005; Hansen et al., 2003).
In order to identify major PM2.5 sources and
quantify their impacts on ambient PM2.5 levels in
both urban and rural areas of the Southeast, two
different source apportionment methods (i.e., CMB
and PMF) were applied to four different ambient
data sets, two urban (Atlanta, GA and Birmingham,
AL) and two rural (Yorkville, GA and Centreville,
AL) sites from the SEARCH. Using this 3-year
dataset, we compare the source apportionment
results of CMB and PMF. Selection of source
profiles in CMB is not always straightforward
because the regional representativeness of specific
emission studies is often unclear. Sensitivity studies
using CMB are therefore conducted. We investigate
the usefulness and limitations of these two com-
monly used source apportionment methods and
examine how the uncertainties of these methods
affect further studies that utilize source apportion-
ment results (e.g., PM epidemiologic studies or
policy analysis). In this study, we examine whether
identified sources and their contribution estimates,
by the two methods, are similar and how well they
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are correlated, which is important for time-series
PM health studies.
2. Method

2.1. Measurement data

PM2.5 composition data analyzed in this study
consist of the measurements taken at two urban–
rural pair sites in Alabama (North Birmingham
[BHM] and Centreville [CTR]) and Georgia (Atlan-
ta [JST] and Yorkville [YRK]) from the SEARCH
study. Twenty-four hour integrated PM2.5 samples
were collected daily at the JST site. PM2.5 samples
were collected every third day at the other sites.
Samples were collected using particulate composi-
tion monitors (PCM, Atmospheric Research and
Analysis, Inc., Durham, NC) that have three
sampling lines (air flow rate 16.7 lmin�1) with inlets
5m above ground. More detailed descriptions can
be found elsewhere (Edgerton et al., 2005; Hansen et
al., 2003). A total of 932 samples for the JST site,
336 samples for the BHM site, 347 samples for the
YRK site and 338 samples for the CTR site were
obtained and analyzed, covering the time period
from January 2000 to December 2002. For each
sample, concentrations of the following 19 chemical
species were usually available: SO4

2�, NO3
�, NH4

+,
EC, OC (OC was calculated as OC1+OC2+OC3+
OC4+OP and EC as EC1+EC2+EC3-OP), As,
Ba, Br, Cu, Mn, Pb, Se, Ti, Zn, Al, Si, K, Ca, and
Fe, although there are occasional ‘‘missing data’’
(no reported measurements) for one or more
species. Total PM2.5 mass concentrations for each
day, analytical uncertainty and detection limit for
each chemical species were also obtained. A detailed
data description was presented by Liu et al. (2005).
2.2. PMF

PMF (Paatero and Tapper, 1994; Paatero, 1997)
was used to analyze PM2.5 data at the four sites. In
this work, measurement uncertainties were used for
the error estimates of the measured values; missing
data were replaced by the geometric mean of
corresponding species and four times of geometric
mean was taken as the corresponding error esti-
mates. Half of the detection limit was used for the
values below the detection limit and 5/6 of the
detection limit was used for the corresponding error
estimate (Polissar et al., 1998).
With the total PM2.5 mass concentration mea-
sured for each sample, multiple linear regression
(MLR) was performed to regress the mass concen-
tration against the factor scores obtained from
PMF. PMF results always have a portion of
unexplained variation. Mass concentrations exclud-
ing the unexplained variation portion from G
factors (factor contributions) were used to regress
the factor scores to obtain the quantitative factor
contributions for each resolved factor. PMF was
able to resolve eight factors for the two urban sites
and seven for the two rural sites. PMF factors were
identified as sulfate, nitrate, wood burning, coal
combustion, motor vehicle, dust, industrial process,
and industrial dust. Results from PMF and more
detailed information about the analysis are also
available in Liu et al. (2005).

2.3. CMB

EPA’s CMB 8.0 model, using the effective
variance weighted least-squares fitting, was applied
to estimate source contributions to PM2.5 for each
sampling day. The same data treatments of missing
and below detection limit data in PMF analysis
were used in the CMB analysis. The major primary
source categories included in the CMB analysis are
motor vehicle, wood burning, coal combustion
(Chow et al., 2004), and dust (Cooper, 1981) for
all four sites, and additionally metal production
only for the BHM site. Source profiles based on
molecular weight fraction for ammonium bisulfate
(NH4HSO4), ammonium sulfate ((NH4)2SO4), am-
monium nitrates (NH4NO3), and secondary organic
carbon (SOC) were also included to address
secondary particle formation.

Without additional ‘‘marker’’ species in the
measurements, a collinearity problem arises in
CMB when profiles for both gasoline and diesel
vehicles are included. Thus, one motor vehicle source
profile obtained from roadside tests (Chow et al.,
2004), instead of two separate source profiles for
gasoline and diesel vehicles, was used in CMB. To
address the uncertainty of the motor vehicle source
profile, sensitivity tests with JST site data were
performed with four different profiles including those
from dilution chamber (Zielinska et al., 1998) and
roadside tests (Chow et al., 2004). Three different
composite source profiles were created by weighted-
averages of gasoline and diesel vehicle source profiles
from dilution chamber tests. Each source profile
represents a different type of motor vehicle emission.
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The first profile is the diesel vehicle dominant
emission (diesel:gasoline ¼ 2:1, 67% diesel and
33% gasoline), the second one is the diesel–gasoline
vehicle equivalent emission (diesel:gasoline ¼ 1:1),
and the third one is the gasoline vehicle dominant
emission (diesel:gasoline ¼ 1:2). Based on the U.S.
EPA 2002 national emissions inventories, the ratio of
diesel-to-gasoline vehicle emission in Fulton County,
GA, where the JST site is located, is about 2, which is
close to that of the first profile. The fourth source
profile was attained from roadside experiments
(Chow et al., 2004).

Applying different motor vehicle source profiles
changes the contributions of other sources, though
the most notable difference among the sensitivity
tests is obviously in the motor vehicle source
contribution, increasing from 13–15% (the profiles
from dilution chamber experiments) to 21% (the
profile from roadside experiments) of PM2.5 mass
(Fig. 1). The CMB performance parameters and
ratios of calculated/measured concentrations indi-
cate that the source apportionment with the
roadside source profile has a better fit to the
measurements (Fig. 2). Therefore, the source profile
from the roadside experiments was used in the CMB
source apportionments in this study.

The chemical species used in CMB are assumed to
be primary. However, ambient OC measured at a
receptor site includes primary OC directly from
emission sources and secondary OC (SOC) from
photochemical formation. In order to apply CMB
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Fig. 1. Average source contributions (%) to PM
using OC information, it is necessary to estimate
SOC either by adding a SOC profile (hereafter
referred to as CMB_OC) or by estimating primary
OC using the EC tracer method (Turpin and
Huntzicker, 1991) prior to the source apportionment
(hereafter referred to as CMB_POC). Both methods
were applied to estimate SOC in this study. The SOC
profile is developed by assigning 1.0 as OC fraction in
order to account for only OC in secondary organic
aerosol (SOA). The estimated SOC is not for SOA,
but for SOC in SOA instead. As organic compounds
in SOA are also associated with other elements
(e.g., oxygen and hydrogen), the OC fraction should
be less than 1.0 for SOA. However, incomplete
scientific understanding of SOA formation limits
estimating the true OC fraction in SOA, which may
introduce errors into SOC estimates. The EC tracer
method is an indirect method, which estimates
primary and secondary OC, based on the fact that
EC is a good tracer for primary carbonaceous
particles (i.e., OC and EC) from combustion sources.
The Deming linear regression was applied for daily
OC and EC data in the lowest 10% by OC/EC ratio
to obtain primary OC/EC ratios for four different
seasons at each site (Lim and Turpin, 2002). Primary
OC was calculated by multiplying OC/EC ratio to
EC assuming that all EC is primary and then SOC
was estimated by subtracting primary OC from
measured OC.

Prior to comparing with PMF results, the
performance of CMB source apportionment was
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validated by performance measures. The averaged
performance measures for CMB (i.e., r2, w2, and
predicted percent mass) are 0.9470.05, 1.0570.91,
90714 (CMB_OC), and 0.9270.06, 1.2170.93,
90713 (CMB_POC) at JST, 0.9370.09, 1.6072.11,
91715 (CMB_OC), and 0.9270.09, 1.5672.04,
91716 (CMB_POC) at BHM, and 0.9570.05,
1.1371.13, 85713 (CMB_OC), and 0.9470.05,
1.0571.04, 86713 (CMB_POC) at YRK, and
0.9770.04, 0.6170.76, 78710 (CMB_OC), and
0.9670.04, 0.5870.67, 78710 (CMB_POC) at
CTR. The CMB performance measures were satisfied
for the recommended targets (Watson et al., 1998).

3. Results

Both CMB and PMF results show that secondary
sulfate is the dominant contributor (33–45%) of
ambient PM2.5 mass in urban and rural areas
(Figs. 3 and 4). Motor vehicle and wood burning
are the two major primary sources. The former
contributes 17–25% in urban areas and 7–9% in
rural areas; the latter contributes 6–13% in urban
areas and 6–30% in rural areas. Coal combustion,
dust, and industrial/metal process are minor con-
tributors (2–13% of PM2.5 mass).

Secondary sulfate is a dominant source factor in
urban and rural areas. CMB has two source profiles
to represent secondary sulfate (NH4HSO4 and
(NH4)2SO4). PMF resolved factor profiles are
comparable with the CMB source sulfate profiles
at all four sites (Fig. 5a) except that OC and small
amounts of EC are associated with this factor in the
PMF results. In PMF, the OC and EC components
reflect mixing of primary and secondary pollutants
while CMB is not affected by mixing. The resolved
PMF factor therefore does not represent a single
pure source. The OC association implies that SOA
formation coincides with the secondary sulfate
formation, while the small EC content likely reflects
an increase of sulfate and EC concentrations during
stagnant conditions (see Figs. S1 and S2 in the
supporting information). In the PMF sulfate factor,
molar ratios of ammonium to sulfate are 2.3, 2.0,
2.1, and 1.6 for the JST, YRK, BHM, and CTR site,
respectively. The ratios suggest that sulfate is
present primarily as ammonium sulfate at these
four receptor sites, although sulfate at CTR is
probably not fully neutralized. CMB results show
that NH4HSO4 contributes 16% (40% of secondary
sulfate) to PM2.5 at CTR, which is much larger than
the other sites, indicating a lower degree of sulfate
neutralization. Both PMF and CMB results show
partial sulfate neutralization at CTR, which is
consistent with the result by Edgerton et al.
(2005), implying less NH3 availability at CRT than
other sites. The estimated sulfate source contribu-
tions from PMF and CMB are well correlated
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(correlation coefficient (r) ¼ 0.94–0.99 in Table 1)
and the average source contributions agree well
(Fig. 4; CMB [6.5373.96], PMF [6.3274.14]).

PMF resolved a nitrate factor, which corresponds
to the NH4NO3 profile in CMB (Fig. 5b). Sulfate
and some OC are mixed in the PMF profiles, likely
arising from concurrent oxidations of NO2, SO2,
and VOCs. Average source contributions from
PMF and CMB agree well with a good correlation
(Table 1 and Fig. 4). The nitrate source contribu-
tions are considerably lower at the CTR site, less
than a half of those at the other sites, reflecting that
sulfate is not fully neutralized limiting the avail-
ability of free ammonia at this site.
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The CMB source profile and the PMF factors
associated with wood burning are in relatively good
agreement, with high concentrations of OC, EC,
and K, although PMF factor profiles are mixed with
some sulfate at the urban sites (Fig. 5c). In general,
wood burning contributions from the two methods
are correlated well at the urban sites, but slightly
lower correlations are observed at the rural sites.
The weaker correlations at the rural sites are likely
because PMF cannot resolve a motor vehicle factor
for the rural sites so that OC and EC become more
influential in identifying wood burning rather than
K. For the urban sites, OC and EC are the main
species resolving the motor vehicle factors and K
is the most influential species for wood burning
(Table S.1.c and d). An analogous case is found for
CMB analysis. In the urban areas, average source
contributions by CMB are comparable or less than
those by PMF, while in the rural areas, source
contributions by PMF are much larger than those
by CMB.

The PMF coal combustion factors have strong
signals of sulfate, ammonium, EC, OC, and Se at all
sites (Fig. 5d). The CMB source profile has higher
levels of elements associated with dust. This
difference may be due, in part, to a lack of locally
appropriate source profile for used in CMB, or
PMF is ‘‘losing’’ the other elements to dust and
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Table 1

Correlation coefficients between CMB and PMF source contributions

Sulfate Nitrate Wood

burning

Coal

combustion

Dusta Motor

vehicle

SOC Metal/

industrial

JSTb

CMB_OC vs. CMB_POC 1.00 1.00 0.91 1.00 1.00 1.00 0.84

CMB_OC vs. PMF 0.99 1.00 0.81 0.23 0.85 0.85 0.58

CMB_POC vs. PMF 0.99 1.00 0.76 0.24 0.85 0.86 0.58

BHM

CMB_OC vs. CMB_POC 1.00 1.00 0.97 1.00 1.00 1.00 0.84 1.00

CMB_OC vs. PMF 0.94 0.98 0.83 0.26 0.82 0.94 0.60 0.86

CMB_POC vs. PMF 0.94 0.98 0.81 0.26 0.83 0.95 0.78 0.86

YRK

CMB_OC vs. CMB_POC 1.00 1.00 0.52 0.98 0.99 0.97 0.67

CMB_OC vs. PMF 0.97 0.97 0.70 0.09 0.88 0.68

CMB_POC vs. PMF 0.97 0.97 0.59 0.09 0.88 0.40

CTR

CMB_OC vs. CMB_POC 1.00 1.00 0.69 0.99 0.99 0.95 0.76

CMB_OC vs. PMF 0.99 0.98 0.77 �0.12 0.89 0.74

CMB_POC vs. PMF 0.99 0.98 0.76 �0.13 0.90 0.50

aNote that PMF resolve two dust factors (dust and industrial dust). Industrial dust is not used for the calculation.
bThe sample size of JST is three times larger than that of other sites because of different sampling frequency (everyday at JST vs. every

third day at the other sites). The larger sample size effect at JST on the correlation coefficients was investigated by recalculating the

correlation coefficients for every third day source apportionment results. We found that the larger sampling size had little effect on the

correlation coefficient estimates.
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industrial dust factors. In PMF, Se is the primary
driving species for coal combustion, whereas in
CMB, Ca is the most influential species along with
Fe, Si, and Al. As a result, the correlations between
CMB and PMF are poor at all sites. Since Se is a
well-known marker for coal combustion, the poor
correlations between Se and coal combustion source
impacts estimated by CMB suggest that the CMB
analysis of this source needs to be improved either
by developing local source profiles for coal combus-
tion or by incorporating other information (e.g.,
gas-to-particle ratios as done in Marmur et al.,
2005).

A motor vehicle factor is resolved only at the two
urban sites by PMF. Motor vehicle contributions
estimated by CMB at the two rural sites are much
smaller (o1/3) than the urban sites. This factor has
large contributions of EC and OC (Fig. 6a).
However, the OC/EC ratios in the source profile
assigned in CMB and those in the factors calculated
by PMF are different. The ratios are about 2 in
PMF as compared to 1 in CMB. The profiles from
PMF are more close to the emission characteristics
of gasoline vehicles, whereas that from CMB
represents mixed emissions from both gasoline and
diesel vehicles. The larger OC contributions in the
PMF factors could arise from condensation of SOC
onto the particles, or that the ratio in the profile
used in the CMB analysis is low. Despite the
difference in the OC/EC ratios, source contributions
from both models are well correlated for the urban
sites since OC and EC are the main species driving
motor vehicle source impacts in both methods
(Table S.1.a and b). Motor vehicle sources have
been identified at the two rural sites in other studies
(Zheng et al., 2002a, 2006). However, they are not
resolved in PMF in this study. The unreserved
motor vehicle source in PMF affects source
apportionment results (e.g., wood burning impacts),
and may introduce errors into the outcomes of
health studies since a known source is not incorpo-
rated into the health studies. It is necessary to utilize
more information (e.g., temperature-resolved car-
bon Liu et al., 2006) to resolve the motor vehicle
source.

PMF resolved two dust factors, dust and in-
dustrial dust, while CMB has only one dust profile
(Fig. 6b and c). The dust factors are rich in Si, Al,
K, Ca, and Fe, and are associated with some OC
and sulfate. The Al/Si ratio (0.47) in the dust profile
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profile is used for each source in CMB. PMF resolved factor profiles are site specific.

S. Lee et al. / Atmospheric Environment 42 (2008) 4126–41374134
used in CMB is similar with those (0.67, 0.49, 0.44,
and 0.48) in the PMF dust factors. In both models,
Al and Si are the primary species driving dust source
contributions (Table S.1). As a result of that, dust
source contributions are well correlated (r ¼
0.82–0.90). Inspection of the time series of the
dust factor reveals that the factor is episodic in
nature; these episodes correspond most likely to
long-range transport from Asian and Saharan
deserts (Liu et al., 2005). The industrial dust
factors only resolved by PMF are rich in Si, Ca,
Fe, and K coupled with EC, OC, and sulfate.
Calcium (Ca) is the most influential species of the
industrial dust along with Si and Fe, which are the
primary species impacting coal combustion in CMB
(Table S.1).

SOC was estimated by adding a SOC profile in
CMB in CMB_OC and by using the EC tracer
method prior to CMB source apportionment in
CMB_POC. In PMF, SOC was calculated by
summing OC fractions mixed in the PMF sulfate
and nitrate factors, and unexplained variations. SOC
levels from CMB_OC are comparable to those from
CMB_POC at urban sites, but they are larger than
those from CMB_POC at rural sites (Fig. 4). In
general, SOC concentrations from PMF are lower
than those from CMB_OC or CMB_POC except
CMB_POC at the YRK site. Yuan et al. (2005) also



ARTICLE IN PRESS
S. Lee et al. / Atmospheric Environment 42 (2008) 4126–4137 4135
found that SOC estimated from PMF is lower than
that from the EC tracer method. SOC estimates
of both CMB_POC and CMB_OC are correlated
well (r ¼ 0.67–0.84, Table 1). Yet, the correlations
between SOC estimated by CMB and PMF are
generally lower than those between SOC estimates of
two CMB except the correlations between PMF and
CMB_OC at the rural sites. Overall, the correlations
between SOC estimated by CMB and PMF are not
as high as observed in secondary inorganic particles
(i.e., sulfate and nitrate).

The large uncertainty in the SOC estimates of
CMB_OC and CMB_POC arises from the fact that
OC dominant emission sources (e.g., meat cooking
and natural gas combustion) may be aggregated
into SOC, leading to overestimation, and the
assumption that a single seasonal OC/EC ratio
can represent a mixture of primary sources varying
in time and space, respectively, while SOC mixed
into the primary source factors in PMF may lead to
underestimation. There is also evidence that meat
cooking and natural gas combustion contribute
significantly to OC in the southeast (Baek et al.,
2005; Zheng et al., 2002b). However, neither PMF
nor CMB can resolve such sources because of the
lack of additional markers and source profiles.
These source impacts must have been distributed
among the sources/factors resolved above to an
unknown degree. This may also cause some
difference between the two models.

4. Discussion

Two different receptor models (PMF and CMB)
were applied to estimate PM2.5 source impacts at
four different receptor sites in the southeastern US.
Secondary sulfate and, to a much lesser extent, SOC
and nitrate account for a large portion of ambient
PM2.5 mass in the Southeast. Among primary
sources, motor vehicles and wood burning are
suggested as the major primary sources at the urban
and/or rural sites.

Sulfate and nitrate contributions estimated by the
two methods are the most comparable. For some
other sources/factors, even for those highly corre-
lated, there are differences in estimated source
contributions. Several factors may contribute to
the differences in the source apportionment results.
The source profiles of primary emission sources in
CMB may not be representative due to a lack of
locally available source profiles, while PMF may
provide information towards developing more
locally representative source profiles, though atmo-
spheric processing and limitations in the PMF
method also affect profiles. One assumption in
CMB is that source profiles (i.e., source character-
istics) do not change after emissions. In comparison,
more processed (or aged) factors are found using
PMF. Therefore, factors resolved using PMF are
more likely mixed source profiles of primary and
secondary compounds, and such factors can have
contributions from multiple sources. The omission
of possible sources and lack of proper markers for
other primary OC sources (e.g., meat cooking and
natural gas combustion) may also lead to differ-
ences as shown in coal combustion, major OC
sources (e.g., motor vehicles and wood burning),
and SOC. In addition, neither PMF nor CMB, as
applied, accounts for the seasonal variations of
source profiles.

The degree of correlation between sources appor-
tionment results of CMB and PMF varies depend-
ing on sources and receptor sites. Secondary
inorganic particles (i.e., sulfate and nitrate) and
dust source contributions are highly correlated
(r ¼ 0.97–1.0 and r ¼ 0.82–0.90, respectively) at all
four sites, whereas little correlation is found for coal
combustion at all four sites. Motor vehicle source
contributions are correlated well (r ¼ 0.85–0.95) at
urban sites, though motor vehicle sources are not
resolved by PMF at rural sites. For wood burning,
better correlations are observed at the urban
(r ¼ 0.76–0.83) than the rural sites (r ¼ 0.59–0.77).
SOC is not correlated as highly as other secondary
sulfate and nitrate particles (r ¼ 0.40–0.74). The
degree of the correlations is important for PM
epidemiologic studies (i.e., time-series health stu-
dies), in which source apportionment results are
associated with adverse health outcomes. The
results from this study suggest that the selection of
either method may not change the outcomes of
time-series health studies for highly correlated
sources/factors, whereas different results may be
produced for less correlated sources/factors. Recent
intercomparison studies (Ito et al., 2006; Mar et al.,
2006; Thurston et al., 2005) of various source
apportionment results for PM time-series study
have shown that changes in health risk ratio
estimates are small even for weakly correlated
sources (median rE0.4, interquartile range of r:
0.3–0.6) and uncertainties introduced by different
source apportionment methods are significantly less
than the overall uncertainty of PM time-series
health study (e.g., mortality regression process).
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Changes in the outcomes of PM time-series health
study due to using different (or less correlated)
source apportionment results may not be significant
even for less correlated sources except motor
vehicles at rural sites and coal combustion at
all sites since the calculated correlation coeffici-
ents in this study are well above or within the
range of those in the intercomparison study
(Thurston et al., 2005). Source apportionments by
either PMF or CMB of motor vehicles at rural sites
and coal combustion need further improvements,
which may be possible by incorporating more
information (e.g., temperature-resolved carbon or
trace gases).

Based on the results from this study, we draw
some general conclusions here. While the source
types resolved by PMF and CMB are similar,
the estimated contributions of primary sources
can be quite different depending on the method
used. The implications for optimizing the emission
controls, for example, can therefore be quite
different. In occasions without adequate knowledge
of emission characteristics (i.e., source profiles)
of local sources, PMF is a more appropriate method
for source apportionment than CMB since CMB
source apportionment results are sensitive to
source profiles used (Lee et al., 2005; Lee and
Russell, 2007). However, it is difficult to assert one
method is superior over the other given the
uncertainties discussed previously without elaborate
studies and a priori knowledge of the emission
characteristics of all major local sources at a site.
We suggest that multiple apportionment methods
are used when possible to assess the uncertainties in
the source apportionment results. For time-series
health studies, which are more dependent on the
correlations with factors/sources, outcomes using
highly correlated source apportionment results of
PMF and CMB are more compatible. We expect
that the same finding will be shown in the regions
other than the Southeast since the correlation
agreement is due to similarities in the profiles
between PMF and CMB, which is dictated qualita-
tively by the general characteristics of the sources/
factors.
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