1. South Pole NOx profile
Measurements over the South Pole indicate that surface NOx emissions are at 2×10^9 molecules cm$^{-2}$ s$^{-1}$. The eddy diffusion coefficient K is 1 m2 s$^{-1}$. (Assume that the air density is constant at 1.5×10^{19} molecules cm$^{-3}$)
(a) Calculate and plot the (0-1 km) vertical profile of NOx over the South Pole if the chemical lifetime of NOx is constant at 7 hours.
(b) Chemical calculations show that the lifetime of NOx (τ) is approximately linear with its mixing ratio (χ) at $\tau = 7 + 0.02 \chi$, where τ is in hours and χ is in pptv. Calculate and plot the (0-1 km) vertical profile of NOx. (Hint: try to use $dz=1$m, $\alpha=0.01$, and convergence criterion of 1%).
(c) Comment on the reason for the difference of the profiles.

2. Term-paper project
Describe the topic of your term-paper project. It can either be a limited-scope independent research project or a critical review of a controversial scientific issue related to air pollution. My preference is an independent research project.